Иногда студенты при решении задач аналитической геометрии сталкиваются с вопросом: «Как найти угол между векторами?». Чтобы решить такую задачу нужно сначала найти косинус угла между ними, а затем и сам угол. Для этого применяется такая формула: $$ phi = arccos(cos phi) $$

Если воспользоваться данной формулой, то сначала нужно найти угол между векторами $ cos phi $. Затем находим арккосинус от косинуса угла $ phi $. А чему равен $ cos phi $? Для его нахождения необходимо воспользоваться следующими формулами.

Формула

Если векторы расположены на плоскости и координаты их заданы в виде: $ overline = (a_x; a_y) $ и $ overline = (b_x; b_y) $, то найти угол между ними можно так:

Если вектора находятся в пространстве и координаты каждого из них заданы в виде: $ overline = (a_x; a_y; a_z) $ и $ overline = (b_x; b_y; b_z) $, то вычислить косинус угла следует по формуле:

Примеры решений

Сначала находим косинус угла между векторами по формуле:

Теперь искомый угол $ phi $ находим по другой формуле:

$$ phi = arccos (cos phi) = arccos (cos frac<sqrt<2>><2>) = 45^0 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти угол между векторами $ overline = (2;4) $ и $ overline = (3;1) $
Решение
Ответ
Угол между двумя векторами равен $ phi = 45^0 $

Подставляем координаты в формулу и вычисляем:

Далее находим сам угол $ phi $ с помощью арккосинуса:

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Скалярным произведением (или внутренним произведением) 2 векторов есть операция с двумя

векторами, итогом чего является число (скаляр), которое не зависит от системы координат и которое

характеризует длины векторов-сомножителей и угол между векторами.

Также скалярным произведением двух векторов называется число, которое

равно произведению модулей 2 векторов на косинус угла между векторами.

Скалярное произведение векторов формула:

Пример 2
Найти угол $ phi $ между двумя векторами $ overline = (8;-11;7) $ и $ overline = (-2;-7;8) $
Решение

Этой операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. Эта

операция зачастую рассматривается как коммутативная и линейная по каждому из сомножителей.

Скалярное произведение векторов ,, обозначается так: (порядок записи сомножителей не имеет

значения, т.е. ).

Еще используются такие обозначения: , , .

В основном имеется ввиду, что скалярное произведение определено положительно, т.е.

при каждом . Если этого не иметь ввиду, то произведение зовется индефинитным

(неопределенным).

Если хотя бы один из 2 векторов или равен нулевому вектору (равен нулю), то .

Свойства скалярного произведения векторов.

1. — симметричность.

2. обозначается и зовется скалярный квадрат.

3. Если , то

4. Если и и и , то . Обратное утверждение тоже соответствует

5.

6.

7.

Если же векторы и заданы своими координатами: , , то: скалярное

произведение векторов, формула:

Формула для определения длины вектора:

Длина (модуль) вектора, с известными координатами, равен квадратному корню из суммы квадратов

Длина вектора , заданного своими координатами, равна:

Как определить угол между 2 векторами:

Как найти угол между двумя векторами , , формула:

Ежели угол меж двумя векторами острый, то их скалярное произведение имеет положительный знак; если

же угол между двумя векторами тупой, то их скалярное произведение имеет отрицательный знак.

Скалярное произведение двух ненулевых векторов равно нулю, тогда и только тогда, когда эти векторы

ортогональны.

Альтернативное определение скалярного произведения векторов (вычисление скалярного

произведения двух векторов, заданных своими координатами).

Вычислить координаты вектора, если заданы координаты его начала и его конца очень просто. Давайте

рассмотрим этот вопрос:

Пусть есть вектор AB, точка А – это начало вектора, а В — конец, и координаты этих точек приведены ниже:

Исходя из этого, координаты вектора АВ:

Точно так же и в двухмерном пространстве – разница в отсутствии третьих координат.

Итак, предположим, даны два вектора, которые заданы набором координат своих точек:

а) В двухмерном пространстве (плоскость):

Значит, скалярное произведение этих векторов вычислим по формуле:

б) В трехмерном пространстве:

Как и в двухмерном случае, скалярное произведение двух векторов вычисляем по формуле: