Ускорение свободного падения на любом расстоянии от Земли, а также на других планетах можно определить по формуле силы земного притяжения.
Cила тяжести равна гравитационной силе, т.е.
На поверхности Земли
На расстоянии r от центра Земли
Здесь:
g — ускорение свободного падения на расстоянии r от цента Земли (м/сек 2 ),
gЗемли — ускорение свободного падения на поверхности Земли (м/сек 2 ),
r — расстояние от цента Земли (метр),
rЗемли — средний радиус Земли 6.37 · 10 6 (метр),
m — масса тела (кг),
mЗемли — масса Земли 5.97 · 10 24 (кг),
γ — гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2 )),
Разделив выражение (1) на выражение (2), получим
Ускорение свободного падения убывает обратно пропорционально квадрату расстояния от цента Земли. Формула ускорения свободного падения справедлива и для других небесных тел.
Сократив выражение (2), получим ускорение свободного падения:
Решебник по физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №8
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ».
Цель работы: вычислить ускорение свободного падения из формулы для периода колебаний математического маятника:
Для этого необходимо измерить период колебания и длину подвеса маятника. Тогда из формулы (1) можно вычислить ускорение свободного падения:
1) часы с секундной стрелкой;
2) измерительная лента (Δл = 0,5 см).
Материалы: 1) шарик с отверстием; 2) нить; 3) штатив с муфтой и кольцом.
Порядок выполнения работы
1. Установите на краю стола штатив. У его верхнего конца укрепите при помощи муфты кольцо и подвесьте к нему шарик на нити. Шарик должен висеть на расстоянии 3—5 см от пола.
2. Отклоните маятник от положения равновесия на 5—8 см и отпустите его.
3. Измерьте длину подвеса мерной лентой.
4. Измерьте время Δt 40 полных колебаний (N).
5. Повторите измерения Δt (не изменяя условий опыта) и найдите среднее значение Δtср.
6. Вычислите среднее значение периода колебаний Tср по среднему значению Δtср.
7. Вычислите значение gcp по формуле:
8. Полученные результаты занесите в таблицу:
9. Сравните полученное среднее значение для gcp со значением g = 9,8 м/с 2 и рассчитайте относительную погрешность измерения по формуле:
Изучая курс физики вам часто приходилось использовать в решении задач и других расчетах значение ускорения свободного падения на поверхности земли. Вы принимали значение g = 9,81 м/с 2 , то есть с той точностью, которой вполне достаточно для производимых вами расчетов.
Целью данной лабораторной работы является экспериментальное установление ускорения свободного падения с помощью маятника. Зная формулу периода колебания математического маятника Т =
можно выразить значение g через величины, доступные простому установлению путем эксперимента и рассчитать g с некоторой точностью. Выразим
где l — длина подвеса, а Т — период колебаний маятника. Период колебаний маятника Т легко определить, измерив время t, необходимое для совершения некоторого количества N полных колебаний маятника
Математическим маятником называют груз, подвешенный к тонкой нерастяжимой нити, размеры которого много меньше длины нити, а масса — много больше массы нити. Отклонение этого груза от вертикали происходит на бесконечно малый угол, а трение отсутствует. В реальных условиях формула
имеет приблизительный характер.
Рассмотрим такое тело (в нашем случае рычаг). На него действуют две силы: вес грузов P и сила F (упругости пружины динамометра), чтобы рычаг находился в равновесии и моменты этих сил должны быть равны по модулю меду собой. Абсолютные значения моментов сил F и P определим соответственно:
В лабораторных условиях для измерения с некоторой степенью точности можно использовать небольшой, но массивный металлический шарик, подвешенный на нити длиной 1-1,5 м (или большей, если есть возможность такой подвес разместить) и отклонять его на небольшой угол. Ход работы целиком понятен из описания ее в учебнике.
Средства измерения: секундомер (Δt = ±0,5 с); линейка или измерительная лента (Δl = ±0,5 см)
Земля | 9,81 м/с 2 | 1,00 g | Солнце | 273,1 м/с 2 | 27,85 g |
Луна | 1,62 м/с 2 | 0,165 g | Меркурий | 3,68—3,74 м/с 2 | 0,375—0,381 g |
Венера | 8,88 м/с 2 | 0,906 g | Марс | 3,86 м/с 2 | 0,394 g |
Юпитер | 23,95 м/с 2 | 2,442 g | Сатурн | 10,44 м/с 2 | 1,065 g |
Уран | 8,86 м/с 2 | 0,903 g | Нептун | 11,09 м/с 2 | 1,131 g |
Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта [2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.
Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах [3] . Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80666 м/с² [4] [5] . Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².
Содержание
Физическая сущность [ править | править код ]
Для определённости будем считать, что речь идёт об ускорении свободного падения на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центростремительного ускорения, связанного с вращением Земли.
Центростремительное ускорение [ править | править код ]
Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, центростремительное ускорение равно ω 2 a , где ω — угловая скорость вращения Земли, определяемая выражением ω = 2π/T , в котором Т — время одного оборота вокруг своей оси (звёздные сутки), равное для Земли 86164 секунды. Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с 2 , причем на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.
Гравитационное ускорение [ править | править код ]
h , км | g, м/с 2 | h , км | g, м/с 2 |
---|---|---|---|
0 | 9,8066 | 20 | 9,7452 |
1 | 9,8036 | 50 | 9,6542 |
2 | 9,8005 | 80 | 9,5644 |
3 | 9,7974 | 100 | 9,505 |
4 | 9,7943 | 120 | 9,447 |
5 | 9,7912 | 500 | 8,45 |
6 | 9,7882 | 1000 | 7,36 |
8 | 9,7820 | 10 000 | 1,50 |
10 | 9,7759 | 50 000 | 0,125 |
15 | 9,7605 | 400 000 | 0,0025 |
В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связано с его массой M следующим соотношением:
g = G M r 2 <displaystyle g=G<frac ,2>
где G — гравитационная постоянная (6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 ) [6] , а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрично. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо наоборот по известной массе и радиусу определить ускорение свободного падения на поверхности.
Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.
Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:
g ( h ) = G M ( r + h ) 2 <displaystyle g(h)=<frac , где M — масса планеты.
Ускорение свободного падения на Земле [ править | править код ]
Ускорение свободного падения у поверхности Земли зависит от широты, времени суток, атмосферного давления и других факторов. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле [7] [8] :
g = 9,780 318 ( 1 + 0,005 302 sin 2 φ − 0,000 006 sin 2 2 φ ) − 0,000 003086 h , <displaystyle g=9<,>780318(1+0<,>005302sin ^<2>varphi -0<,>000006sin ^<2>2varphi )-0<,>000003086h,> где φ <displaystyle varphi >
— широта рассматриваемого места, h <displaystyle h>
— высота над уровнем моря в метрах.
Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли, дополнив её поправками, связанными с вращением Земли, приливными воздействиями и другими факторами.
Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.
Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счет центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от следствий из этой упрощённой модели. Так, самое низкое значение g зафиксировано на горе Уаскаран в Перу (9,7639 м/с²) в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от северного полюса [9] .
Ускорение свободного падения для некоторых городов | ||||
---|---|---|---|---|
Город | Долгота | Широта | Высота над уровнем моря, м | Ускорение свободного падения, м/с 2 |
Алматы | 76,85 в.д. | 43,22 с.ш. | 786 | 9.78125 |
Берлин | 13,40 в.д. | 52,50 с.ш. | 40 | 9,81280 |
Будапешт | 19,06 в.д. | 47,48 с.ш. | 108 | 9,80852 |
Вашингтон | 77,01 з.д. | 38,89 с.ш. | 14 | 9,80188 |
Вена | 16,36 в.д. | 48,21 с.ш. | 183 | 9,80860 |
Владивосток | 131,53 в.д. | 43,06 с.ш. | 50 | 9,80424 |
Гринвич | 0,0 в.д. | 51,48 с.ш. | 48 | 9,81188 |
Каир | 31,28 в.д. | 30,07 с.ш. | 30 | 9,79317 |
Киев | 30,30 в.д. | 50,27 с.ш. | 179 | 9,81054 |
Мадрид | 3,69 в.д. | 40,41 с.ш. | 667 | 9,79981 |
Минск | 27,55 в.д. | 53,92 с.ш. | 220 | 9,81347 |
Москва | 37,61 в.д. | 55,75 с.ш. | 151 | 9,8154 |
Нью-Йорк | 73,96 з.д. | 40,81 с.ш. | 38 | 9,80247 |
Одесса | 30,73 в.д. | 46,47 с.ш. | 54 | 9.80735 |
Осло | 10,72 в.д. | 59,91 с.ш. | 28 | 9,81927 |
Париж | 2,34 в.д. | 48,84 с.ш. | 61 | 9,80943 |
Прага | 14,39 в.д. | 50,09 с.ш. | 297 | 9,81014 |
Рим | 12,99 в.д. | 41,54 с.ш. | 37 | 9,80312 |
Стокгольм | 18,06 в.д. | 59,34 с.ш. | 45 | 9,81843 |
Токио | 139,80 в.д. | 35,71 с.ш. | 18 | 9,79801 |
Измерение [ править | править код ]
Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.
Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.