Разделы: Математика
Данная статья посвящена изучению проблемы вычисления объемов геометрических тел с помощью интегрального исчисления. Может быть полезна как опытному учителю, так и начинающему. В приложении вставлена презентация по данной теме. Презентация
Изучив тему “Интегралы и их применение” в курсе алгебры и начала анализа, меня заинтересовали задачи на вычисление объемов геометрических тел. В учебнике “ Алгебра и начала анализа 10-11” Колмагорова А.Н. приводится красивое решение задачи на вычисление объема усеченной пирамиды с помощью интеграла, а в учебнике по геометрии “Геометрия 10-11” Погорелова А.В. представлены выводы формул объемов геометрических тел традиционным способом, некоторые из которых довольны трудоемки и нет единого алгоритма вывода. Выводы формул для вычисления объемов стереометрических фигур, таких как наклонная призма, пирамида, конус, шар, шаровой сегмент возможны по единому алгоритму с помощью интегрального исчисления. Он нетруден, компактен и интересен. Учитель может сэкономить время учебной программы и решить данную задачу за 1-2 урока, появляется возможность использовать высвобожденное время на решение задач для подготовки к ЕГЭ. А мотивированные учащиеся смогут быстро восстановить формулы объемов геометрических тел на экзаменах.
Общие предпосылки для вычисления объемов геометрических тел с помощью интегрального исчисления.
Для тел вращения объем вычисляется по формуле .
Вычислим объемы наклонной призмы, пирамиды, конуса, шара, шарового сегмента.
Допущения:
- Выбираем начало координат O и проводим ось OX;
- Выбираем пределы интегрирования;
- Вычисляем объем тел по интегральной формуле.
Применим данный алгоритм к выбранным объектам.
Вычисление объема наклонной призмы
Q – площадь основания
Действуем согласно алгоритму:
- О – выбираем произвольно и проводим
основанию
- a=0; b=H; Q – const.
Вычисление объема пирамиды
Q – площадь основания;
Действуем согласно алгоритму:
- 0
- пределы интегрирования
.
– выбираем в вершине пирамиды, проводим основанию
. 3.; тогда
Вычисление объема конуса
Q – площадь основания
По алгоритму:
- 0;
- a=0, b=H
Тогда,
Вычисление объема шара
Рассмотрим
,
Объем шарового сегмента
H — высота сегмента
По алгоритму:
- 0,
,
.
Формулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла
В данном разделе справочника приведена таблица, содержащая формулы, с помощью которых можно вычислить:
Площади криволинейных трапеций различного вида (площади фигур, ограниченных графиками функций);
Длины дуг кривых на плоскости;
Объемы тел, если известны площади их поперечных сечений;
Объемы тел, полученных при вращении криволинейных трапеций вокруг оси абсцисс Ox ;
Площади поверхностей тел, полученных при вращении графиков функций вокруг оси абсцисс Ox .
Рисунок | Формула | Описание |
(1) |
Подставим найденную производную в формулу (1), а затем вычислим полученные интегралы при помощи таблицы неопределенных интегралов и формулы Ньютона — Лейбница:
Ответ .
Вывод формул для объема пирамиды и для объема шара
Решение . Рассмотрим произвольную n — угольную пирамиду BA1A2 . An с вершиной B, высота BK которой равна H, а площадь основания A1A2 . An равна S. Обозначим через S (x) площадь сечения этой пирамиды плоскостью, параллельной параллельной основанию пирамиды и находящейся на расстоянии расстоянии x от вершины пирамиды B (рис. 4).
Поскольку многоугольники и A1A2 . An подобны с коэффициентом подобия
, то площади этих многоугольников удовлетворяют равенству
(2) |
Рассмотрим теперь в пространстве систему координат Oxyz и расположим нашу пирамиду BA1A2 . An так, чтобы ее вершина B совпала с началом координат O, а высота пирамиды BK оказалась лежащей на оси Ox (рис. 5).
Тогда сечение пирамиды и будет поперечным сечением, поскольку его плоскость перпендикулярна оси Ox.
Итак, мы получили формулу для объема пирамиды
котрой пользовались в различных разделах справочника.
Замечание . Совершенно аналогично выводится формула для объема конуса. Формулы для объема прямой призмы объема прямой призмы и для объема цилиндра вывести таким способом еще проще, поскольку у них все сечения, перпендикулярные высоте, равны между собой. Мы рекомендуем провести эти выводы читателю самостоятельно в качестве полезного упражнения.
Пример 5 . Вывести формулу для объема шара радиуса R, воспользовавшись формулой для вычисления объема тела вращения.
(3) |
графиком которой является верхняя полуокружность радиуса R с центром в начале координат O. Шар радиуса R получается в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции (3) и ограниченной снизу отрезкомоси Ox (рис. 6).
что и должно было получиться.
Вывод формулы для площади сферы
Решение . Снова рассмотрим функцию
(4) |
графиком которой является верхняя полуокружность радиуса R с центром в начале координат O (рис. 7).
Поскольку сфера радиуса R получается в результате вращения вокруг оси Ox графика функции (4), то в соответствии с формулой для вычисления площади поверхности тела вращения получаем
Подставим найденную производную в выражение, стоящее под знаком квадратного корня:
Таким образом, подынтегральная функция принимает вид:
Краткое описание документа:
ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:
Сегодня на уроке мы выведем формулу для вычисления объема тела при помощи определенного интеграла и применения формулы к решению задачи.
Вспомним, что называется определенным интегралом.
Если функция f(x) непрерывна на промежутке I числовой оси, содержащей точки х=а и х=b, то разность значений F(b)-F(a) (где F(x) — первообразная f(x) на I) называется определенным интегралом от функции f(x) от a до b.
Это формула получила название Ньютона-Лейбница.
(интеграл от a до b эф от икс дэ икс равен разности значений первообразной эф большое от бэ и а)
Выведем основную формулу для вычисления объемов тел, основанную на понятии интеграла: объем тела равен интегралу от а до b площади основания фигуры дэ икс,
Будем рассматривать произвольное тело объёмом V, заключенное между двумя параллельными плоскостями которая перпендикулярна данным плоскостям.