рХУФШ a Й b — ДМЙОЩ ЛБФЕФПЧ РТСНПХЗПМШОПЗП ФТЕХЗПМШОЙЛБ, c — ДМЙОБ ЕЗП ЗЙРПФЕОХЪЩ. дПЛБЦЙФЕ, ЮФП:

Б) ТБДЙХУ ЧРЙУБООПК ПЛТХЦОПУФЙ ФТЕХЗПМШОЙЛБ ТБЧЕО ( a + b — c )/2;

В) ТБДЙХУ ПЛТХЦОПУФЙ, ЛБУБАЭЕКУС ЗЙРПФЕОХЪЩ Й РТПДПМЦЕОЙК ЛБФЕФПЧ, ТБЧЕО ( a + b + c )/2.

тЕЫЕОЙЕ
фЕНЩ:[]
[]

ч ФТЕХЗПМШОЙЛ ABC УП УФПТПОБНЙ AB = 5, BC = 7, CA = 10 ЧРЙУБОБ ПЛТХЦОПУФШ. рТСНБС, РЕТЕУЕЛБАЭБС УФПТПОЩ AB Й BC Ч ФПЮЛБИ M Й K , ЛБУБЕФУС ЬФПК ПЛТХЦОПУФЙ. оБКДЙФЕ РЕТЙНЕФТ ФТЕХЗПМШОЙЛБ MBK .

уФТБОЙГБ: 1 2 3 4 5 6 7 >> [чУЕЗП ЪБДБЮ: 2794]

рТПЕЛФ ПУХЭЕУФЧМСЕФУС РТЙ РПДДЕТЦЛЕ Й .

Две окруж­но­сти ка­са­ют­ся внеш­ним об­ра­зом в точке K. Пря­мая AB ка­са­ет­ся пер­вой окруж­но­сти в точке A, а вто­рой&nbsp— в точке B. Пря­мая BK пе­ре­се­ка­ет первую окруж­ность в точке D, пря­мая AK пе­ре­се­ка­ет вто­рую окруж­ность в точке C.

а) До­ка­жи­те, что пря­мые AD и BC па­рал­лель­ны.

б) Най­ди­те пло­щадь тре­уголь­ни­ка AKB, если из­вест­но, что ра­ди­у­сы окруж­но­стей равны 4 и 1.

а) Обозначим центры окружностей O1 и O2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, — прямоугольный.

Вписанный угол AKD прямой, поэтому он опирается на диаметр AD. Значит, ADAB. Аналогично получаем, что BCAB. Следовательно, прямые AD и BC параллельны.

б) Пусть, для определенности, первая окружность имеет радиус 4, а радиус второй равен 1.

Треугольники BKC и AKD подобны, Пусть , тогда

У треугольников AKD и AKB общая высота, следовательно, то есть SAKB = 4S. Аналогично, SCKD = 4S. Площадь трапеции ABCD равна 25S.

Вычислим площадь трапеции ABCD. Проведём к AD перпендикуляр O2H, равный высоте трапеции, и найдём его из прямоугольного треугольника O2HO1:

Тогда

Следовательно, 25S = 20, откуда S = 0,8 и SAKB = 4S = 3,2.

Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.

а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.

б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.

а) Пусть АВ — диаметр большей из трёх окружностей, О — её центр, O1 — центр окружности радиуса r у касающейся окружности с диаметром АВ в точке А, O2 — центр окружности радиуса R, касающейся окружности с диаметром АВ в точке С, окружности с центром O1 — в точке D, отрезка АВ — в точке Е. Точки О, O2 и С лежат на одной прямой, поэтому OO2 = ОСO2С = ОСR. Аналогично ОО1 = OAО1А = ОАr и O1O2 = O1D + O2D = r + R. Следовательно, периметр треугольника OO1O2 равен

а так как О1E = OO1 + ОЕ, то Полученное уравнение не имеет корней, что означает, что данная конфигурация невозможна.

Рассмотрим случай, когда точка Е лежит между точками О и А. В этом случае О1E = OO1ОЕ, то есть Из этого уравнения находим, что

Ответ:

Хорды AD, BE и CF окружности делят друг друга на три равные части.

а) Докажите, что эти хорды равны.

б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E последовательно расположены на окружности, а радиус окружности равен

а) Пусть две хорды равны 3x и 3y. По теореме о произведении пересекающихся хорд 2x · x = 2y · y. Отсюда находим, что x = y, значит, эти хорды равны. Аналогично докажем, что третья хорда равна каждой из первых двух.

б) Равные хорды равноудалены от центра окружности, поэтому центр равностороннего треугольника с вершинами в точках попарного пересечения хорд совпадает с центром данной окружности. Пусть хорды BE и CF пересекают хорду AD в точках P и Q соответственно, хорды BE и FC пересекаются в точке T, а H — проекция центра O на хорду AD. Тогда H — общая середина отрезков AD и PQ, а OH — радиус вписанной окружности равностороннего треугольника PQT со стороной PQ.

Через точку T проведём прямую, параллельную AD, через точку P — прямую, параллельную CF, а через точку Q — прямую, параллельную BE. Эти прямые и хорды AD, BE и CF разбивают шестиугольник ABCDEF на 13 одинаковых равносторонних треугольников.

Обозначим PQ = 2a. Тогда

Отсюда находим, что a = 3, значит, PQ = 2a = 6,

Ответ:

Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.

а) Докажите, что прямые KM и BC параллельны.

б) пусть L — точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.

а) Пусть O — центр большей окружности. Линия центров касающихся окружностей проходит через точку касания, поэтому OA — диаметр меньшей окружности.

Точка K лежит на окружности с диаметром OA, значит, ∠AKO = 90°. Отрезок OK — перпендикуляр, опущенный из центра большей окружности на хорду AB. Поэтому K — середина AB. Аналогично, M — середина AC, поэтому KM — средняя линия треугольника ABC. Следовательно, прямые MK и BC параллельны.

б) Опустим перпендикуляр OH на хорду BC. Тогда H — середина BC. Из прямоугольного треугольника OHB находим, что

Пусть Q — центр меньшей окружности. Тогда прямые QP и OH параллельны. Опустим перпендикуляр QF из центра меньшей окружности на OH. Тогда

PH 2 = QF 2 = QO 2 − OF 2 = 25 − 1 =24,

OP 2 = OH 2 + PH 2 = 36 + 24 = 60,

а из прямоугольного треугольника APO находим, что

Отрезок KM — средняя линия треугольника ABC, поэтому L средина AP. Следовательно,

Ответ: б)

Приведём решение Марии Ковалёвой (Москва).

а) Проведём общую касательную к окружностям AT, как показано на рисунке слева. Тогда и поскольку угол между касательной и хордой равен половине заключённой между ними дуги. Тогда равны Соответственные углы при пересечении прямых KM и BC равны, поэтому данные прямые параллельны.

б) По обобщенной теореме синусов, в треугольниках AKM и ABC стороны KM и BC относятся так же, как радиусы данных в условии окружностей, то есть как 1 : 2. Следовательно, KM — средняя линия треугольника ABC, и по теореме Фалеса. Осталось найти .

Опустим перпендикуляр OH на хорду BC (см. рисунок справа). Тогда H — середина BC. Из прямоугольного треугольника OHB находим, что

Треугольник OAP прямоугольный, так как угол OРA опирается на диаметр. Углы OAP и OPH равны по теореме об угле между касательной и хордой. Следовательно, прямоугольные треугольники OAP и OPH подобны по острому углу. Имеем: , то есть . Следовательно, . По теореме Пифагора, Окончательно получаем:

Решение "сыпется", если концы хорды ВС расположить по разные стороны от диаметра (ОА). Тогда ОН, по-прежнему равный 6 из теоремы Пифагора, будет по чертежу меньше, чем параллельный ему радиус QP=5 меньшей окружности

Да, Ваше рассуждение доказывает, что этот случай невозможен.

По­че­му К се­ре­ди­на АВ при усло­вии,что ОК пер­пен­ди­ку­ляр? Что за свой­ство?

Свой­ство вы­со­ты рав­но­бед­рен­но­го тре­уголь­ни­ка. Тре­уголь­ник ОАВ — рав­но­бед­рен­ный, ОК — его вы­со­та, про­ве­ден­ная к ос­но­ва­нию

Две окруж­но­сти ка­са­ют­ся внеш­ним об­ра­зом в точке K. Пря­мая AB ка­са­ет­ся пер­вой окруж­но­сти в точке A, а вто­рой&nbsp— в точке B. Пря­мая BK пе­ре­се­ка­ет первую окруж­ность в точке D, пря­мая AK пе­ре­се­ка­ет вто­рую окруж­ность в точке C.

а) До­ка­жи­те, что пря­мые AD и BC па­рал­лель­ны.

б) Най­ди­те пло­щадь тре­уголь­ни­ка AKB, если из­вест­но, что ра­ди­у­сы окруж­но­стей равны 4 и 1.

Задание а). Обозначим центры окружностей и соответственно. Пусть общая касательная, проведённая к окружностям в точке пересекает в точке По свойству касательных, проведённых из одной точки, и. Треугольник у которого медиана равна половине стороны, к которой она проведена, — прямоугольный.

Вписанный угол прямой, поэтому он опирается на диаметр Значит, Аналогично получаем, что Следовательно, прямые и параллельны.

Задание б). Пусть, для определенности, первая окружность имеет радиус 4, а радиус второй равен 1.

Треугольники и подобны, Пусть , тогда

У треугольников общая высота, следовательно, то есть Аналогично, Площадь трапеции равна

Вычислим площадь трапеции Проведём к перпендикуляр равный высоте трапеции, и найдём его из прямоугольного треугольника

Тогда

Следовательно, откуда и

Хорды, касательные и секущие.

Окружностью называется геометрическое место точек, равноудаленных от одной точки, которая называется центром окружности.

Отрезок, соединяющий две точки окружности, называется хордой (на рисунке это отрезок ). Хорда, проходящая через центр окружности, называется диаметром окружности.

Хорда окружности обладает следующими свойствами:

  1. Хорды, находящиеся на одинаковом расстоянии от центра окружности, равны.
  2. Если хорды стягивают равные центральные углы, то они равны.
  3. Если диаметр перпендикулярен хорде, то он проходит через ее середину.
  4. Если вписанные углы опираются на одну хорду, то они равны.
  5. Две дуги равны, если они заключены между двумя равными хордами.
  6. Если пара вписанных углов опирается на одну и ту же хорду, а их вершины лежат по разные стороны хорды, то их сумма составляет 180°.
  7. Для любых двух хорд и , пересекающихся в точке О, выполняется равенство: .

Прямая, имеющая с окружностью одну общую точку, называется касательной (на рисунке отрезок ).

Прямая, имеющая с окружностью две общие точки, называется секущей (отрезок ).

Свойства касательной и секущей

  1. Касательная перпендикулярна радиусу, проведенному в точку касания.
  2. Отрезки касательных, проведенных из одной точки, равны.
  3. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: