В гл. 15 описываются балансные модуляторы (рис. 15.3), выполняющие двойную функцию: модуляции несущей для полу­чения боковых полос и подавления этой несущей с тем, чтобы на выходе присутствовали только сигналы боковых полос. На рис. 6.7 показана схема балансного модулятора такого ти­па на двух р — n р-транзисторах. Обратите внимание на то, что сигнал радиочастотной несущей прикладывается к обмотке L4 трансформатора, обеспечивающего передачу сигнала на об­мотку L3. Последняя обмотка включена последовательно с ис­точником напряжения питания. Поэтому радиочастотный вход­ной сигнал прикладывается в фазе к обеим базам транзисторов T1 и Т4. Следовательно, любой полупериод радиочастотного сигнала создает на обеих базах одинаковое изменение прямого смещения. Поэтому если, например, полярность напряжения на L3 обратна прямому (отрицательному) смещению, действующе­му между базой и эмиттером, то уменьшение этого смещения уменьшает ток обоих коллекторов. Поскольку коллекторы тран­зисторов ti и Т2 включены по двухтактной схеме, их коллектор­ные токи проходят в направлениях, показанных на рис. 6.7 стрелками. Изменения токов в L5 и L6 равны и противополож­ны по знаку, вследствие чего изменения токов, представляющих радиочастотные сигналы, взаимно уничтожаются (предпола­гается, что схема сбалансирована, а транзисторы и конденсато­ры С3 и С4 являются идентичными).

Рис. 6.7. Балансный модулятор.

Вторичная обмотка L2 входного трансформатора, через ко­торый подаются сигналы звуковых частот, имеет центральный отвод, поэтому к базам транзисторов прикладываются напря­жения, сдвинутые по фазе относительно друг друга на 180°, что свойственно двухтактной схеме.

Вследствие того что сигналы звуковых частот вызывают в транзисторах ti и Т2 изменения коллекторных токов, токи несу­щей частоты в каждом транзисторе модулируются. При этом возникают боковые частоты модуляции, резонансными схема­ми для которых являются контуры, образованные C3L5 и C4L6. Такие резонансные схемы имеют низкий импеданс для звуковых сигналов, поскольку частоты последних далеки от резонансных частот этих контуров, поэтому звуковые сигналы на выходе ос­лабляются. Вследствие подавления несущей на выходе системы балансного модулятора действуют только сигналы боковых по­лос модуляции.

Конденсаторы C1 и С2 на входе представляют низкое реак­тивное сопротивление для радиочастотных сигналов, и поэтому через них осуществляется подача радиочастотных сигналов к базам транзисторов. Однако для сигналов звуковых частот, по­являющихся на обмотке L2, эти конденсаторы обладают очень высоким реактивным сопротивлением, и поэтому сигналы не шунтируются.

Данный модулятор представляет собой два однотактных амплитудных модулятора работающих на общую нагрузку (рисунок 19). Модулятор содержит два диода с одинаковыми ВАХ аппроксимированными полиномами третьей степени. Два резистора с малым, но одинаковым сопротивлением являются нагрузкой диодов. Модулирующий сигнал подается через первичную обмотку трансформатора, а несущее колебание подается через среднюю точку вторичной обмотки трансформатора и точкой соединения двух резисторов.

4.

Рисунок 19 — Принципиальная электрическая схема балансного модулятора

Спектр сигнала на выходе модулятора показан на рисунке 20.

5.

Рисунок 20 — Спектральная диаграмма сигнала на выходе балансного модулятора

Как следует из спектра выходного сигнала, в нем отсутствуют составляющие несущего сигнала, четные составляющие модулирующего сигнала и их высшие гармоники, которые вносят искажения формы модулированного сигнала. Отсутствие составляющей несущего сигнала и ее гармоник объясняется тем, что падение напряжения, вызванные токами этих колебаний на резисторах, имеют одинаковые значения, но противоположную полярность. К недостаткам модулятора можно отнести наличие составляющих модулирующего сигнала и высших гармоник модулированного сигнала.

Б)Кольцевой модулятор

Данный модулятор представляет собой два балансных модулятора работающих на общую нагрузку (рисунок 21).

Рисунок 21 — Принципиальная электрическая схема кольцевого модулятора

Спектр сигнала на выходе кольцевого модулятора показан на рисунке 22.

Рисунок 22 — Спектральная диаграмма сигнала на выходе кольцевого модулятора

Как видно из диаграммы в спектре сигнала отсутствуют составляющие несущего и модулирующего сигналов, а также отсутствуют высшие составляющие модулированного сигнала. Таким образом, кольцевой модулятор является идеальным модулятором, но лишь для сигналов небольшой амплитуды. При больших амплитудах S(t) и u(t) в спектре выходного сигнала появляются различные комбинации нечетных гармоник входных сигналов.

В)Амплитудный модулятор на транзисторе

Данный модулятор (рисунок 23) используется для формирования больших амплитуд.

Рисунок 23- Принципиальная электрическая схема амплитудного модулятора на транзисторе

В модуляторе в качестве нелинейного элемента используется транзистор (VT), включенный по схеме с общим эмиттером. Нагрузкой транзистора является колебательный контур С2 L1, который используется в качестве полосового фильтра и настраивается на частоту первой гармоники несущего колебания w0. Также модулятор содержит делитель напряжения R1 R2 подающий напряжение смещения для выбора положения рабочей точки транзистора, резистор R3 обеспечивающий температурную стабилизацию рабочей точки, разделительные конденсаторы С1, С3, С4 разделяющие ток питания от тока сигнала. Модулирующий сигнал подается на эмиттер транзистора. Несущее колебание вместе с напряжением смещения поступают на базу VT. Модулированный сигнал снимается с коллектора.

Достоинством данного модулятора является высокий КПД, т. к. транзистор работает в режиме отсечки коллекторного тока. Временные диаграммы сигналов схемы, поясняющие процесс формирования АМ сигнала в режиме отсечки коллекторного тока показаны на рисунке 24.

6.

Рисунок 24 — Формирование АМ сигнала в режиме отсечки коллекторного тока

Непрерывные радиосигналы с ОМ нашли широкое применение на загруженных участках диапазона частот, особенно KB — диапазона, т.к. они имеют сравнительно узкую ширину спектра частот, обладают высокой помехоустойчивостью и эффективностью.

В настоящее время существует несколько способов формирования однополосного сигнала:

— синтетический и др.

Наиболее широкое распространение получил фильтровой способ. Суть этого способа заключается в выделении с помощью фильтра одной из боковых полос амплитудно-модулированного сигнала, сформированного на относительно низкой постоянной частоте, с последующим линейным переносом выделенного сигнала в область высоких рабочих частот.

функциональная схема фильтрового способа формирования однополосного сигнала представлена на рис.6.1.

Принцип работы схемы заключается в следующем:

На один из входов балансного смесителя в качестве модулирующего сигнала подаются колебания первичного электрического сигнала. Обычно это колебания звуковой частоты Df =0.3 до 3.4 кГц.

На второй вход смесителя поступают колебания первой поднесущей частоты f1, обычно равной несколько десяткам кГц.

После преобразования этих двух колебаний на выходе смесителя, работа которого будет рассмотрена ниже, имеются колебания суммарных, разностных и комбинированных частот. С помощью полосового фильтра из всех колебаний выделяются только колебания суммарных, разностных и комбинированных частот. С помощью полосового фильтра из всех колебаний выделяются только колебания суммарных (или разностных) частот, т.е. колебания ВБП (или НБП), сформированной на частоте f1 (рис.6.2)

РИС.6.2.

Формирование ВБП на частоте f1. РИС.6.3. Формирование ВБП на частоте f1-f2, f1+f2 .

Выделенные колебания поступают на вход второго балансного смесителя, где преобразуются совместно с колебаниями второй поднесущей частоты f2, обычно равной нескольким сотням кГц. С помощью ПФ — 2 из всей суммы колебаний, имеющихся на выходе БС — 2, выделяются только колебания суммарных частот, т.е. колебания ВБП (НБП) сформированной на частоте fi+f2 (Рис.6.3.)

Выделение ПФ — 2 колебания поступают на вход БС — 3, куда также подаются колебания с выхода синтезатора частот fc, частота которых изменяется от fc min до fc max в зависимости от рабочей частоты возбудителя.

Полосовым фильтром ПФ-3 выделяются колебания суммарных частот, которые будут являться колебаниями ВБП (НБП), сформированными на рабочей частоте возбудителя f1. (Рис.6.4.).

РИС.6.4. Колебания суммарных частот на выходе ПФ-3.

Т.о., путем нескольких последовательных преобразований с фильтрацией осуществляется формирование однополосного сигнала на рабочей частоте. При этом при первом преобразовании осуществляется формирование первичного радиосигнала с ОМ, последующие же преобразования необходимы для переноса первичного радиосигнала в диапазон рабочих частот.

По функциональной схеме радиостанции Р-130м показать пример формирования ОМ сигнала по ВБП.

Дата добавления: 2014-10-17 ; Просмотров: 2221 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Характеристики модуляторов

Основными характеристиками модуляторов являются модуляционная и частотная.

Модуляционная характеристика представляет собой зависимость отклонения информационного параметра несущей от воздействующего постоянного модулирующего напряжения Uм. При гармонической несущей это отклонение амплитуды ?Um при АМ, отклонение частоты ?? при ЧМ и отклонение фазы ?? при ФМ.

В идеальном случае модуляционная характеристика должна быть линейной (рисунок 15) однако реальная характеристика имеет отклонения. Эти отклонения приводят к нелинейным искажениям модулированного сигнала. По данной характеристике определяют качественные показатели модулятора (амплитуду модулирующего сигнала).

Рисунок 15 — модуляционная характеристика модулятора

Частотная характеристика представляет собой зависимость основного параметра модулированного сигнала от частоты модулирующего гармонического сигнала uМ(t). Для гармонической несущей такими параметрами являются ? коэффициент mАМ при АМ, девиация частоты ??m при ЧМ, индексу ??m при ФМ.

Идеальная частотная характеристика имеет постоянное значение на всех частотах (рисунок 16). Реальная характеристика имеет отклонения, что приводит к частотным искажениям. По частотной характеристике определяют частотные свойства модулятора (полосу пропускания модулятора).

Рисунок 16 — Частотная характеристика модулятора

Модуляционная и частотная характеристики снимаются экспериментально.

Формирование амплитудно-модулированных сигналов

Однотактный амплитудный модулятор на диоде

В состав данного модулятора входит диод (нелинейный элемент) и полосовой фильтр (рисунок 17). Нелинейный элемент в схеме необходим так как модуляция связана с изменением спектра сигнала.

Рисунок 17- Принципиальная электрическая схема однотактного амплитудного модулятора на диоде

На диод VD, вольтамперная характеристика которого аппроксимирована полиномом второй степени, подаются три напряжения: напряжение смещения U0, напряжения модулирующего сигнала (u(t)) и несущего (S(t)) колебания. Спектр отклика диода при таком воздействии будет иметь вид (рисунок). В данном спектре модулированному сигналу соответствуют составляющие на частотах w0, ?0±?. Эти составляющие выделяются полосовым фильтром, в качестве которого используется колебательный LC контур, настроенный на частоту ?0. Временные диаграммы сигналов представлены на рисунке 18.

Рисунок 18 — Спектральная диаграмма отклика диода

Недостатком данного модулятора является присутствие в спектре АИ сигнала составляющей несущего сигнала.

Балансный модулятор

Данный модулятор представляет собой два однотактных амплитудных модулятора работающих на общую нагрузку (рисунок 19). Модулятор содержит два диода с одинаковыми ВАХ аппроксимированными полиномами третьей степени. Два резистора с малым, но одинаковым сопротивлением являются нагрузкой диодов. Модулирующий сигнал подается через первичную обмотку трансформатора, а несущее колебание подается через среднюю точку вторичной обмотки трансформатора и точкой соединения двух резисторов.

Рисунок 19 — Принципиальная электрическая схема балансного модулятора

Если в некоторый момент времени напряжения u(t) и S(t) будут иметь полярность показанную на рисунке, то пренебрегая падением напряжения на резисторах, напряжение на диодах будет равно:

где uII(t) — напряжение модулирующего сигнала во вторичной обмотке трансформатора.

Напряжение на выходе балансного модулятора будет равно

где а1, а2, а3 — коэффициенты аппроксимирующего полинома.

Спектр сигнала на выходе модулятора показан на рисунке 20.

Рисунок 20 — Спектральная диаграмма сигнала на выходе балансного модулятора

Как следует из спектра выходного сигнала, в нем отсутствуют составляющие несущего сигнала, четные составляющие модулирующего сигнала и их высшие гармоники, которые вносят искажения формы модулированного сигнала. Отсутствие составляющей несущего сигнала и ее гармоник объясняется тем, что падение напряжения, вызванные токами этих колебаний на резисторах, имеют одинаковые значения, но противоположную полярность. К недостаткам модулятора можно отнести наличие составляющих модулирующего сигнала и высших гармоник модулированного сигнала.

Кольцевой модулятор

Данный модулятор представляет собой два балансных модулятора работающих на общую нагрузку (рисунок 21).

Рисунок 21 — Принципиальная электрическая схема кольцевого модулятора

Четыре диода VD1 — VD4 имеют одинаковые ВАХ аппроксимированные полиномами третьей степени. Если полярность напряжений u(t) и S(t) в некоторый момент времени соответствует показанной на рисунке, то, пренебрегая падением напряжения на резисторах, напряжение на диодах будет равно

Напряжение на выходе модулятора будет равно

Спектр сигнала на выходе кольцевого модулятора показан на рисунке 22.

Рисунок 22 — Спектральная диаграмма сигнала на выходе кольцевого модулятора

Как видно из диаграммы в спектре сигнала отсутствуют составляющие несущего и модулирующего сигналов, а также отсутствуют высшие составляющие модулированного сигнала. Таким образом, кольцевой модулятор является идеальным модулятором, но лишь для сигналов небольшой амплитуды. При больших амплитудах S(t) и u(t) в спектре выходного сигнала появляются различные комбинации нечетных гармоник входных сигналов.

Амплитудный модулятор на транзисторе

Данный модулятор (рисунок 23) используется для формирования больших амплитуд.

Рисунок 23- Принципиальная электрическая схема амплитудного модулятора на транзисторе

В модуляторе в качестве нелинейного элемента используется транзистор (VT), включенный по схеме с общим эмиттером. Нагрузкой транзистора является колебательный контур С2 L1, который используется в качестве полосового фильтра и настраивается на частоту первой гармоники несущего колебания w0. Также модулятор содержит делитель напряжения R1 R2 подающий напряжение смещения для выбора положения рабочей точки транзистора, резистор R3 обеспечивающий температурную стабилизацию рабочей точки, разделительные конденсаторы С1, С3, С4 разделяющие ток питания от тока сигнала. Модулирующий сигнал подается на эмиттер транзистора. Несущее колебание вместе с напряжением смещения поступают на базу VT. Модулированный сигнал снимается с коллектора.

Достоинством данного модулятора является высокий КПД, т. к. транзистор работает в режиме отсечки коллекторного тока. Временные диаграммы сигналов схемы, поясняющие процесс формирования АМ сигнала в режиме отсечки коллекторного тока показаны на рисунке 24.

Рисунок 24 — Формирование АМ сигнала в режиме отсечки коллекторного тока

Преобразование частоты

Преобразование частоты — процесс переноса спектра сигнала в область более высоких или более низких частот без изменения формы спектра и формы сигнала.

Под формой спектра понимается соотношение между составляющими спектра сигнала. По сути, модуляция и детектирование также являются преобразованием частоты, т. к. при модуляции спектр модулирующего сигнала переносится в область более высоких частот, а при детектировании происходит обратный процесс. Но в основном при преобразовании частоты осуществляется изменение частоты модулированных сигналов.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.