Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а — с индуктивным балластом, б — с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л — люминесцентная лампа, Д — дроссель, Ст — стартер, С1 — С3 — конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л — люминесцентная лампа, Ст- стартер, С — конденсатор, r — разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л — люминесцентная лампа, Д — дроссель, НТ — накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бесстартерных — 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

При расчете сетей освещения с люминесцентными лампами, то необходимо учитывать, что даже при компенсированных схемах без пускорегулирующих устройств нельзя полностью уничтожить сдвиг фаз. Поэтому необходимо при определении расчетного тока сетей с люминесцентными лампами принимать для схем с компенсацией реактивной мощности косинус фи = 0,9, а при отсутствие конденсаторов в схемах косинус фи = 0,5. Кроме того, необходимо учесть потери мощности в пускорегулирующей аппаратуре.

При выборе сечений проводов четырехпроводных сетей с люминесцентными лампами следует учитывать некоторые особенности таких сетей. Дело в том, что нелинейность вольтамперной характеристики люминесцентных ламп, а также наличие в их цели катушки индуктивности со стальным сердечником и конденсаторов выливают несинусопдалькость кривой тока и вследствие этого появление высших гармоник, существенно изменяющих ток нулевого провода даже при равномерной нагрузке фаз.

Ток в нулевом проводе может достигать значений, близких к току в фазном проводе 85—87% от I ф. Отсюда вытекает необходимость выбирать сечение нулевого провода в четырехпроводных сетях люминесцентного освещения равным сечению фазных проводов, а при прокладке проводов в трубах допустимую токовую нагрузку надо принимать как для четырех проводов в одной трубе.

Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а — с индуктивным балластом, б — с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л — люминесцентная лампа, Д — дроссель, Ст — стартер, С1 — С3 — конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л — люминесцентная лампа, Ст- стартер, С — конденсатор, r — разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л — люминесцентная лампа, Д — дроссель, НТ — накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бесстартерных — 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

При расчете сетей освещения с люминесцентными лампами, то необходимо учитывать, что даже при компенсированных схемах без пускорегулирующих устройств нельзя полностью уничтожить сдвиг фаз. Поэтому необходимо при определении расчетного тока сетей с люминесцентными лампами принимать для схем с компенсацией реактивной мощности косинус фи = 0,9, а при отсутствие конденсаторов в схемах косинус фи = 0,5. Кроме того, необходимо учесть потери мощности в пускорегулирующей аппаратуре.

При выборе сечений проводов четырехпроводных сетей с люминесцентными лампами следует учитывать некоторые особенности таких сетей. Дело в том, что нелинейность вольтамперной характеристики люминесцентных ламп, а также наличие в их цели катушки индуктивности со стальным сердечником и конденсаторов выливают несинусопдалькость кривой тока и вследствие этого появление высших гармоник, существенно изменяющих ток нулевого провода даже при равномерной нагрузке фаз.

Ток в нулевом проводе может достигать значений, близких к току в фазном проводе 85—87% от I ф. Отсюда вытекает необходимость выбирать сечение нулевого провода в четырехпроводных сетях люминесцентного освещения равным сечению фазных проводов, а при прокладке проводов в трубах допустимую токовую нагрузку надо принимать как для четырех проводов в одной трубе.

Для освещения гаража решил собрать лампу дневного света, посмотрел схемы в сети есть схемы с конденсатором

Конденсатор большой ёмкости в вашем случае предназначен для сдвига по фазе пульсации второй лампы, чтобы не было стробоскопического эффекта. Устанавливается обычно в двухламповых светильниках. (Или с числом ламп кратно двум)Ёмкость конденсатора приблизительно 3-4 микрофарады. Можно не ставить, но будет здорово давить на глаза.

Во втором случае на схеме одна лампа, там очевидно что конденсатор не требуется.

Я так понял речь об люминисцентных лампах дневного света.

Что бы понять зачем нужен конденсатор, надо разобраться как всё это работает.

Напрямую от сети 220-ь Вольт лампа дневного света не заработает (не включится).

Для их запуска используется специальный пуско-регулирующий блок, аппаратуру (ПРА).

Данная аппаратура состоит из трёх составляющих (частей, элементов).

Дроссель конденсатор и стартер.

У каждого своё предназначение.

Конденсатор снижает помехи электродов стартера (во время их замыкания и размыкания).

Увеличивает длительность импульса при размыкании тех самых электродов.

Предотвращает "залипание" (спаивание) электродов, это происходит за счёт высокого импульсного напряжения.

Если это двухламповый светильник, то конденсатор предотвращает (точней снижает) пульсацию светового потока, за счёт сдвига фазы одной лампы относительно другой.