Содержание урока

Уменьшение неопределенности знания

Уменьшение неопределенности знания

Получение информации можно связать с уменьшением неопределенности знания. Это позволяет количественно измерять информацию, что чрезвычайно важно для информатики. Рассмотрим вопрос об определении количества информации более подробно на конкретных примерах.

Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий — монета окажется в одном из двух положений: «орел» или «решка».

Можно говорить, что события равновероятны, если при возрастающем числе опытов количества выпадений «орла» и «решки» постепенно сближаются. Например, если мы бросим монету 10 раз, то «орел» может выпасть 7 раз, а решка — 3 раза, если бросим монету 100 раз, то «орел» может выпасть 60 раз, а «решка» — 40 раз, если бросим монету 1000 раз, то «орел» выпадет 520 раз, а «решка» — 480 и т. д. В итоге при очень большой серии опытов количества выпадений «орла» и «решки» практически сравняются.

Перед броском существует неопределенность нашего знания (возможны два события), и как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим (получаем зрительное сообщение), что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности нашего знания в два раза, так как из двух возможных равновероятных событий реализовалось одно (рис. 2.12).

Рис. 2.12. Возможные и произошедшее события

В окружающей действительности достаточно часто встречаются ситуации, когда может произойти некоторое количество равновероятных событий. Так, при бросании равносторонней четырехгранной пирамиды существуют 4 равновероятных события, а при бросании шестигранного игрального кубика — 6 равновероятных событий.

Чем больше количество возможных событий, тем больше начальная неопределенность нашего знания и соответственно тем большее количество информации будет содержать сообщение о результатах опыта.

Следующая страница Единицы измерения количества информации

Cкачать материалы урока

Процесс научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. п.), и с точки зрения процесса познания информацию можно рассматривать как знания. Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний! можно говорить о том, что это сообщение содержит информацию.

Подход к информации как к мере уменьшения неопределенности знаний позволяет измерять информацию количественно.

В нашей жизни часто встречаются ситуации, когда может про’ изойти некоторое количество равновероятных событий. Например, при бросании монеты она с равной вероятностью может оказаться в одном из двух положений: «орел» или «решка». Перед броском существует неопределенность наших знаний (возможны два события). После броска наступает полная определенность, т. к. мы видим, что монета находится в определенном положении. Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, т. к. до броска мы имели два вероятных события, а после броска — только одно, т. е. в два раза меньше.

Содержательный подход к измерению информации При определении количества информации на основе уменьшения неопределенности знаний информация рассматривается с точ­ки зрения содержания, ее понятности и новизны для человека. С этой точки зрения при выпадении «орла» или «решки» в примере с бро­санием монеты содержится одинаковое количество информации, так как оба эти события равновероятны.

Существует формула, которая связывает между собой количество возможных равновероятных событий N и количество инфор­мации /’: N = 2′.

В том случае, если события не являются равновероятными, ко­личество информации в сообщении о некотором событии будет за­висеть от вероятности этого события: чем меньше вероятность, тем больше информации.

Алфавитный подход к определению количества информации При хранении и передаче информации с помощью технических устройств информацию рассматривают как последовательность зна­ков — цифр, букв, кодов и т. д.

Набор символов знаковой системы (алфавит) можно рассматри­вать как различные возможные состояния (события). Тогда, если считать, что появление символов в сообщении равновероятно, мож­но воспользоваться известной формулой для определения количе­ства возможных событий, по которой можно рассчитать, какое ко­личество информации N несет каждый символ: N = 2′, где i — коли­чество символов знаковой системы (иначе его называют мощностью алфавита).

Таким образом, количество информации, которое содержит со­общение, закодированное с помощью знаковой системы, равно ко­личеству информации, которое несет один знак, умноженному на количество знаков.

Такой подход к измерению количества информации называется алфавитным подходом. Важно, что при алфавитном подходе к из­мерению информации количество информации не зависит от ее со­держания, а зависит от объема теста и от мощности алфавита. Единицы измерения количества информации Для определения количества информации введены специальные единицы измерения.

За единицу принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность знаний в два раза. Такая единица называется бит (bit — от английского словосо­четания Binary digiT).

Следующая по величине единица — байт, 1 байт — это количе­ство информации об одном символе (букве, цифре, знаке). 1 байт — 2 3 бит = 8 бит. Далее следуют:

1 кбайт (килобайт) = 1024 байта; 1 Мбайт (мегабайт) = 1024 кбайта; 1 Гбайт (гигабайт) = 1024 Мбайта.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9372 — | 7304 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Информация и знания. Человек получает информацию из окружающего мира с помощью органов чувств, анализирует ее и выявляет существенные закономерности с помощью мышления, хранит полученную информацию в памяти. Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и так далее). Таким образом, с точки зрения процесса познания информация может рассматриваться как знания.

Процесс познания можно наглядно изобразить в виде расширяющегося круга знания (такой способ придумали еще древние греки). Вне этого круга лежит область незнания, а окружность является границей между знанием и незнанием. Парадокс состоит в том, что чем большим объемом знаний обладает человек (чем шире круг знаний), тем больше он ощущает недостаток знаний (тем больше граница нашего незнания, мерой которого в этой модели является длина окружности).

Так, объем знаний выпускника школы гораздо больше, чем объем знаний первоклассника, однако и граница его незнания существенно больше. Действительно, первоклассник ничего не знает о законах физики и поэтому не осознает недостаточности своих знаний, тогда как выпускник школы при подготовке к экзаменам по физике может обнаружить, что существуют физические законы, которые он не знает или не понимает.

Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

Например, после сдачи экзамена по информатике вы мучаетесь неопределенностью, вы не знаете какую оценку получили. Наконец, экзаменационная комиссия объявляет результаты экзамена, и вы получаете сообщение, которое приносит полную определенность, теперь вы знаете свою оценку. Происходит переход от незнания к полному знанию, значит, сообщение экзаменационной комиссии содержит информацию.

Уменьшение неопределенности знаний. Подход к информации как мере уменьшения неопределенности знаний позволяет количественно измерять информацию, что чрезвычайно важно для информатики. Рассмотрим вопрос об определении количества информации более подробно на конкретных примерах.

Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий — монета окажется в одном из двух положений: «орел» или «решка».

Можно говорить, что события равновероятны, если при возрастающем числе опытов количества выпадений «орла» и «решки» постепенно сближаются. Например, если мы бросим монету 10 раз, то «орел» может выпасть 7 раз, а решка — 3 раза, если бросим монету 100 раз, то «орел» может выпасть 60 раз, а «решка» — 40 раз, если бросим монету 1000 раз, то «орел» может выпасть 520 раз, а «решка» — 480 и так далее

В итоге при очень большой серии опытов количества выпаде­ний «орла» и «решки» практически сравняются.

Перед броском существует неопределенность наших знаний (возможны два события), и, как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим (получаем зрительное сообщение), что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных события, а после броска — только одно, то есть в два раза меньше.

В окружающей действительности достаточно часто встречаются ситуации, когда может произойти некоторое количе­ство равновероятных событий. Так, при бросании равносто­ронней четырехгранной пирамиды существуют 4 равновероятных события, а при бросании шестигранного игрального кубика — 6 равновероятных событий.

Чем больше количество возможных событий, тем больше начальная неопределенность и соответственно тем большее количество информации будет содержать сообщение о результатах опыта.

Единицы измерения количества информации. Для количественного выражения любой величины необходимо определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы — килограмм и так далее. Аналогично, для определения количества информации необходимо ввести единицу измерения.

За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица названа «бит».

Если вернуться к опыту с бросанием монеты, то здесь неопределенность как раз уменьшается в два раза и, следовательно, полученное количество информации равно 1 биту.

Минимальной единицей измерения количества информации является бит, а следующей по величине единицей является байт, причем

1 байт = 2 3 бит = 8 бит

В информатике система образования кратных единиц измерения количества информации несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n=3, 6, 9 и так далее, что соответствует десятичным приставкам Кило (10 3 ), Мега (10 6 ), Гига (10 9 ) и так далее.

Компьютер оперирует числами не в десятичной, а в двоичной системе счисления, поэтому в кратных единицах измерения количества информации используется коэффициент 2 n .

Так, кратные байту единицы измерения количества ин­формации вводятся следующим образом:

1 Кбайт = 2 10 байт = 1024 байт;

1 Мбайт = 2 10 Кбайт = 1024 Кбайт;

1 Гбайт = 2 10 Мбайт = 1024 Мбайт.

Количество возможных событий и количество информации. Существует формула, которая связывает между собой количество возможных событий N и количество информации I:

По этой формуле можно легко определить количество возможных событий, если известно количество информа­ции. Например, если мы получили 4 бита информации, то количество возможных событий составляло:

Наоборот, для определения количества информации, если известно количество событий, необходимо решить показательное уравнение относительно I. Например, в игре «Крестики-нолики» на поле 8×8 перед первым ходом существует 64 возможных события (64 различных варианта расположения «крестика»), тогда уравнение принимает вид:

Так как 64 = 2 6 , то получим:

Таким образом, I = 6 битов, то есть количество информации, полученное вторым игроком после первого хода первого игрока, составляет 6 битов.