В роли датчика тока в этом устройстве применены два соединенных в прямом направлении диода. Падения напряжения на них хватает для того, что бы засветился светодиод-индикатор. Последовательно с светодиодом включено сопротивление, номинал которого должен быть выбран таким, что бы при максимальных значениях тока нагрузки, ток через светодиод не превысил допустимый. Максимальный прямой ток диодов должен быть как минимум в два раза больше максимального тока нагрузки. Светодиод подойдет абсолютно любой.

Благодаря малым габоритам, низкому потреблению электричества и невысокой потери мощности в цепи переменного напряжения 220В, радиолюбительская конструкция может быть легко встроено в стандартную бытовую розетку, удлинител, автоматический выключатель. Индикация позволяет отследить не только наличие превышения тока но и быстро зафиксировать пробой обмоток электродвигателей или повышенную механическую нагрузку на электроинструмент.

Датчик тока построен на самодельных герконовых реле К1 — К3, обмотки которых имеют разное количество витков, поэтому, контакты герконов срабатывают при разных номиналах протекающего тока. В этой схеме обмотка первого реле имеет наибольшее количество витков, поэтому, контакты К1.1 замкнуться раньше других контактов. При потребляемой нагрузкой токе от 2 А до 4 А будет гореть только светодиод HL1. При замкнутых К1.1, но разомкнутых контактов остальных герконов, ток питания светодиода HL1 будет идти по диодным цепочкам VD9 — VD12 и VD13 — VD16. При увеличении контролируемого параметра более 4 А начнут срабатывать контакты геркона К2.1 и загориться еще HL2 Обмотка КЗ имеет минимальное количество витков, поэтому контакты К3.1 замыкаються при I в нагрузке более 8 А.

Так как, обмотки самодельных герконовых реле имеют малое количество витков, нагрев обмоток практически отсутствует. Узел светодиодного индикатора тока получает питание от бестрансформаторного блока питания, выполненного на конденсаторе С1, токоограничительных сопротивлениях R1, R2, мостовом выпрямителе VD1 -VD4. Емкость С2 сглаживает пульсации выпрямленного напряжения.

Катушки герконов изготовлены из обмоточного провода диаметром 0,82 мм в один ряд. Чтобы не испортить стеклянный корпус геркона, витки обмоток лучше наматывать на гладкой части стального сверла диаметром 3,2 мм. Расстояние между витками 0,5 мм. Катушка реле К1 — 11 витков, К2 — 6 витков, К3 — всего 4 витка. Ток срабатывания контактов зависит не только от количества витков, но и от конкретного типа геркона и места расположения катушки на баллоне, когда катушка расположена по центру корпуса геркона, чувствительность наилучшая.

Изменяя число витков катушек можно подобрать другие значения индикации тока подключенных нагрузок, при которых будут светиться светодиоды. Для небольшой коррекции можно изменять положение катушки на корпусе геркона. После настройки катушки фиксируются каплями полимерного клея.

Предлагаемая радиолюбительская конструкция подойдет для световой индикации потребляемого тока (и мощности) нагрузкой, подсоединенной к переменной сети 220 В. Устройство включают в разрыв одного из сетевых проводов. Особенности конструкции — отсутствие источника питания и гальваническая развязка. Этого удалось достичь использованием ярких и токового трансформатора.

В состав схемы токового индикатора входят трансформатор Т1, два однополупериодных выпрямителя на VD1 и VD2 со сглаживающими емкостями С1 и С2. К первому выпрямителю подсоединены светодиоды HL1 и HL4, ко второму — HL2 и HL3. Параллельно HL2 — HL4 установлены подстроечные сопротивления R1 — R3. С помощью них можно регулировать выходной ток выпрямителя, при котором определенные светодиоды начинают гореть.

Когда ток нагрузки следует через первичную обмотку токового трансформатора Т1, во вторичной появляется переменное напряжение, которое выпрямляют выпрямители. Индикатор отрегулирован так, что при токе нагрузки ниже 0,5 А напряжения на выходах выпрямителей нехватает для свечения светодиодов. Если ток превысит этот уровень, начнётся слабое, но вполне заметное свечение светодиода HL1 (красного цвета). С ростом нагрузочного тока выходной ток выпрямителя также увеличивается. Если ток нагрузки достигнет уровня в 2 А, загорится светодиод HL2 (зелёного цвета), при токе выше 3-х А — HL3 (синего), а если ток будет более 4 А, начнёт гореть белый светодиод HL4. Домашние опыты показали, что устройство работоспособно до тока в нагрузке 12 А, для бытовых нужд этого вполне хватит, при этом ток протекающий через светодиоды не более 15-18 мА.

Все радиокомпоненты, кроме токового трансформатора, смонтированы на печатной плате из стеклотекстолита, чертёж которой показан на рисунке выше. В схеме индикатора используются подстроечные сопротивления СПЗ-19, емкости — оксидные, диоды можно взять любые маломощные выпрямительные, светодиоды — только повышенной яркости.

Токовый трансформатор сделан своими руками из понижающего трансформатора малогабаритного источника питания (120/12 В, 200 мА). Активное сопротивление первичной обмотки состовляет 200 Ом. Обмотки трансформатора намотаны в разных секциях. Для указанных выше параметров схемы число витков первичной обмотки трансформатора — три, провод должен быть в хорошей изоляции и рассчитан на сетевое напряжение и ток, потребляемый нагрузкой. Для изготовления трансформатора можно взять любой маломощный серийный понижающий трансформатор, например, ТП-121,ТП-112.

Для градуировки шкалы можно использовать амперметр переменного тока и понижающий трансформатор с напряжением вторичной обмотки 5-6 В и током до пары ампер. Изменяя номинал нагрузочного сопротивления, задают требуемый ток и подстроечными сопротивлениями добиваются зажигания соответствующего светодиода.

Правильная работа автомобильного аккумулятора — залог длительного срока ее эксплуатации и безопасной работы. Контроль режима зарядки-разрядки АКБ дает возможность вовремя предпринять меры, а также следить за правильной работой генератора, стартера и электропроводки автомобиля.

Индикатор контролирует падение напряжения на проводнике, соединяющем минусовой вывод АКБ с "Массой" автомобиля. Этот проводник подсоединен в классический резистивный измерительный мост R1—R5, что даает возможность снимать с него разнополярные сигналы и усиливать их с помощью операционного усилителя с однополярным питанием. В цепь отрицательной ОС ОУ DA1 подключены диоды VD1—VD4, которые расширяют пределы измеряемого тока, позволяя измерять даже ток потребления стартером при пуске двигателя автомобиля.

Регистрирующим инструментом является любой магнитоэлектрический миллиамперметр с шкалой с нулем посредине,например М733 с током полного отклонения стрелки в 50мкА. На шкале удобнее всего равномерно расположить три метки справа и слева от нуля: 5 А, 50 А и 500 А. Питает индикатор параметрический стабилизатор напряжения 6,6 В. Правый вывод сопротивления R5 оставляют постоянно подсоединенным к минусовому выводу батареи.

Для градуировки шкалы сначала подают питание непосредственно от батареи аккумуляторов и подстроечным сопротивлением R4 устанавливают стрелку микроамперметра на нуль. Затем при выключенном ключе зажигания подключаем плюсовой вывод батареи через мощное (около 60 Вт) сопротивление номиналом 2,4 Ом соединенное с корпусом автомобиля и подстроечным сопротивлением R7 устанавливают стрелку амперметра на отметку 5 А. После градуировки плюсовой вывод питания индикатора подсоединяем к плюсовому выводу бортовой сети автомобиля.

Конструкция светодиодных индикаторов несколько сложнее. Конечно, при использовании специальной микросхемы управления ее можно упростить до предела, но тут притаилась маленькая неприятность. Большинство таких микросхем развивает на выходе ток не более 10 мА и яркость светодиодов в условиях автомобиля может оказаться недостаточной. Кроме того, наиболее распространены микросхемы с выходами на 5 светодиодов, а это только "программа-минимум". Поэтому для наших условий схема на дискретных элементах предпочтительней, ее можно расширять без особых усилий.

Простейший индикатор на светодиодах (рис.4) не содержит активных элементов и в питании поэтому не нуждается. Подключение — к магнитоле по схеме "mixed mono" или с разделительным конденсатором, к усилителю — "mixed mono" или напрямую.


Рис. 4

Схема предельно проста и не требует налаживания. Единственная процедура — подбор резистора R7. На схеме указан номинал для работы со встроенными усилителями головного устройства. При работе с усилителем мощностью 40. 50 Вт сопротивление этого резистора должно быть 270. 470 Ом. Диоды VD1. VD7 — любые кремниевые с прямым падением напряжения 0,7. 1 В и допустимым током не менее 300 мА.

Светодиоды любые, но одного типа и цвета свечения с рабочим током 10. 15 мА. Поскольку светодиоды "питаются" от выходного каскада усилителя, их количество и рабочий ток увеличить в этой схеме нельзя. Поэтому придется выбрать "яркие" светодиоды или найти для индикатора такое место, где он будет защищен от прямого освещения. Еще один недостаток простейшей конструкции — малый динамический диапазон.

Для улучшения работы необходим индикатор со схемой управления. Помимо большей свободы в выборе светодиодов можно простыми средствами сформировать шкалу любого типа — от линейной до логарифмической, или "растянуть" только один участок. Схема индикатора с логарифмической шкалой приведена на рис. 5. Пунктиром показаны необязательные элементы.


Рис. 5

Светодиоды в этой схеме управляются ключами на транзисторах VT1. VT5. Пороги срабатывания ключей задают диоды VD3. VD9. Подбирая их количество, можно изменять динамический диапазон и тип шкалы. Общую чувствительность индикатора определяют резисторы на входе. На рисунке приведены примерные пороги срабатывания для двух вариантов схемы — с одиночными и "сдвоенными" диодами. В основном варианте диапазон измерения — до 30 Вт на нагрузке 4 Ом, с одиночными диодами — до 18 Вт.

Светодиод HL1 светится постоянно, он обозначает начало шкалы, HL6 — индикатор перегрузки. Конденсатор C4 задерживает на 0,3. 0,5 сек погасание светодиода, что позволяет заметить даже кратковременную перегрузку. Накопительный конденсатор C3 определяет время обратного хода. Оно, кстати, зависит от количества светящихся светодиодов — "столбик" от максимума начинает спадать быстро, , а потом "притормаживает". Конденсаторы C1,C2 на входе устройства нужны только при работе со встроенным усилителем магнитолы. При работе с "нормальным" усилителем их исключают. Количество сигналов на входе можно увеличить, добавив цепочки из резистора и диода. Количество ячеек индикации можно увеличить простым "клонированием", главное ограничение — "пороговых" диодов должно быть не больше 10 и между базами соседних транзисторов должен быть хотя бы один диод.

Светодиоды можно использовать любые в зависимости от требований — от одиночных светодиодов до светодиодных сборок и панелей повышенной яркости. Поэтому на схеме приведены номиналы токоограничивающих резисторов для разных рабочих токов. К остальным деталям никаких специальных требований не предъявляется, транзисторы можно использовать практически любые структуры n-p-n с мощностью рассеяния на коллекторе не менее 150 мВт и двукратным запасом по току коллектора. Коэффициент передачи тока базы этих транзисторов должен быть не менее 50, а лучше — больше 100.

Эту схему можно несколько упростить, при этом в качестве побочного эффекта появляются новые свойства, весьма полезные для наших целей (рис.6).


Рис. 6

В отличие от предыдущей схемы, где транзисторные ячейки были включены параллельно, здесь использовано последовательное включение "столбиком". Пороговыми элементами являются сами транзисторы и открываются они по очереди — "снизу вверх". Но в данном случае порог срабатывания зависит от напряжения питания. На рисунке показаны примерные пороги срабатывания индикатора при напряжении питания 11 В (левая граница прямоугольников) и 15 В (правая граница). Видно, что с ростом напряжения питания больше всего смещается граница индикации максимальной мощности. В случае использования усилителя, мощность которого зависит от напряжения аккумулятора (а таких немало), подобная "автокалибровка" может принести пользу.

Однако плата за это — возросшая нагрузка на транзисторы. Через нижний по схеме транзистор протекает ток всех светодиодов, поэтому при использовании индикаторов с током более 10 мА транзисторы тоже потребуются соответствующей мощности. "Клонирование" ячеек еще более увеличивает неравномерность шкалы. Поэтому 6-7 ячеек — это предел. Назначение остальных элементов и требования к ним — те же, что и в предыдущей схеме.

Слегка модернизировав эту схему, получим другие свойства (рис.7). В этой схеме в отличие от ранее рассмотренных, нет светящейся "линейки". В каждый момент времени светится только один светодиод, имитируя движение стрелки по шкале. Поэтому потребление энергии минимально и в этой схеме можно применить маломощные транзисторы. В остальном схема не отличается от рассмотренных ранее.

Пороговые диоды VD1. VD6 предназначены для надежного отключения неработающих светодиодов, поэтому если будет наблюдаться слабая засветка лишних сегментов, необходимо использовать диоды с большим прямым напряжением или включить последовательно по два диода. "Клонирование" ячеек уменьшает яркость свечения верхних по схеме сегментов, для устранения этого вместо резистора R9 нужно вводить генератор тока. А мы договорились — не усложнять. Поэтому в данном случае 8 ячеек — это максимум.


Рис. 7

Компактный и простой индикатор может быть использован для индикации тока нагревательных элементов малой и средней мощности. Типичный пример это аквариумный обогреватель. Часто подобные изделия оснащаются светодиодным индикатором, но собраны он по схеме индикатора напряжения. Подобное включение делает возможной ситуацию, когда нагревающая спираль перегорела, а индикатор продолжает светиться. Схема, предложенная далее, включается последовательно с нагрузкой, и светодиод горит только при прохождении тока через нагреватель.

При предложенных деталях индикатор может быть собран даже начинающим электронщиком. В принципе достаточно не бояться паяльника и знать, что в диодах бывают анод и катод. Ниже приведена фотография сборки диодной части схемы уместившейся на электрическом клеммнике.

Пример включения диодов

Схема состоит всего из трёх или четырёх диодов и использует их прямое напряжение, неизбежно возникающее на этих полупроводниках при прохождении прямого тока. При этом два диода соединённые последовательно выполняют функцию стабистора, напряжение, возникающее на них, при прохождении тока через нагрузку стабилизировано на уровне 1,5-2,5 Вольта.

Схема инликатора тока с красным светодиодом

В схеме использованы элементы советского периода, диоды КД105Б и светодиод красного цвета АЛ307Б. При использовании этих элементов и их исправности схема будет работать без наладки.

Начинающим. В этой схеме не обязательно разбираться, где у диода плюс, где минус. Соединяются элементы по принципу два последовательных в одну сторону меткой, один в противоположную. К выходу подключается нагрузка, например лампочка, к входу схемы 220 Вольт. Лампочка должна загореться. Далее аккуратно, не прикасаясь пальцами к токоведущим частям схемы подсоединяют светодиод. Если светодиод загорелся, то в таком положении он и должен припаиваться, если не загорелся, то его переворачивают наоборот.

Возможности изменения схемы индикатора тока и увеличения мощности нагрузки

Мощность нагрузки такой схемы ограничена только максимальным прямым током диодов. Для КД105 и Д226 этот ток 300мА, то есть максимальная мощность нагрузки в этом случае P 0,3 * 2 * 220 = 132 Вт. Если же, к примеру взять диоды Д245 с Iпр.ср = 10А, то мощность нагрузки можно увеличить до 4400 Вт.

В случае замены диодов из схемы следует учитывать их прямое среднее напряжение. Например, германиевые полупроводники имеют меньшее прямое напряжение, и светодиод в этом случае не загорится, либо придётся последовательно включать таких диодов три или даже четыре.

Естественно обратное максимальное напряжение VD1 — VD3 должно быть не менее 300 Вольт.

При замене в схеме красного светодиода АЛ307Б на зелёный (АЛ307В) нужно учитывать, что напряжение свечения зелёных, оранжевых, белых и прочих, в том числе китайских светодиодов может быть большим, чем Uпр двух диодов КД105. В этом случае последовательно можно включить три или даже четыре диода.

Схема индикатора тока для зелёного светодиода

Практически экспериментировал с АЛ307В, китайским жёлтым и ярким белым светодиодом. Зелёный и жёлтый загорелись с тремя КД105, а для белого их потребовалось четыре. Для экспериментов использовалось нагрузка в виде 40-Ваттной лампы накаливания.

Злоупотреблять количеством КД105 не следует, так как в этом случае возрастает напряжение на светодиоде и придётся ограничивать его ток резистором

Конструкция и установка

Учитывая простоту и компактность схемы её можно установить практически в любом электротехническом изделии. На фото использованы обычная розетка и небольшая коммутационная панель (клеммник)

Светодиод вклеен в крышку розетки и в данном случае припаян к диодам жилками от связного кабеля ТПП (кроссировкой)

Конечный вид установленного индикатора