Ответ или решение 1

Вероятности попадания из каждого орудия:
p1 = 0,8; p2 = 0,7; p3 = 0,9;
Вероятность не попасть из каждого орудия:
q1 = 1 — 0,8 = 0,2; q2 = 1 — 0,7 = 0,3 ; q3 = 1 — 0,9 = 0,1;

Только один снаряд попадет в цель:
Пусть А — событие, при котором будет только одно попадание.
А1, A2, A3 — попадание было из орудия 1,2 или 3.
A`1, A`2, A`3 — попадания не было из орудия 1,2 или 3. Это противоположные события.
Представим вероятность как сумму вероятностей несовместных событий:
P(A) = P(A1)P(A`2)P(A`3) +P(A`1)P(A2)P(A`3)+ P(A`1)P(A`2)P(A3) =
= p1 · q2· q3 + q1 · p2 · q3 + q1 · q2 · p3 =
= 0,8 · 0,3 · 0,1 + 0,2 · 0,7 · 0,1 + 0,2 · 0,3 · 0,9 = 0,092;
Только два снаряда попадут в цель:
P(A) = p1 · p2· q3 + p1 · q2 · p3 + q1 · p2 · p3 =
= 0,8 · 0,7 · 0,1 + 0,8 · 0,3 · 0,9 + 0,2 · 0,7 · 0,9 = 0,398;
Хотя бы один снаряд попадет в цель:
Пусть A` — противоположное событие — ни один снаряд не попадет в цель:
P(A`) = q1 · q2 · q3 = 0,2 · 0,3 · 0,1 = 0,006;
Противоположное ему событие A — хотя бы один снаряд попадет в цель будет:
P(A) = 1 — P(A`) = 1 — 0,006 = 0,994;
Ответ: а) 0,092; б) 0,398; в) 0,994.

Ответ

Відповідь:0,976

Покрокове пояснення: а) вероятность что не попадут 0,3*0,4*0,2=0,024

вероятность что попадут 1-0,024=0,976

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.

Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.

Основной метод решения подобных задач — использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который поможет решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах.

Онлайн решение задачи про попадание в цель

Выберите количество стрелков и затем введите в поля вероятности $p_i$ их попаданий в цель (десятичный разделитель — точка):

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач с выстрелами: как использовать Excel для решения типовых задач с 2, 3 и 4 стрелками (выстрелами).

Расчетный файл Эксель из видео можно бесплатно скачать.

Два стрелка

Начнем традиционно с более простых задач, а именно, с двух стрелков. Пусть первый стрелок попадает в цель с вероятностью $p_1$, а второй — с вероятностью $p_2$ (конкретные числа см. в примерах ниже). Соответственно, сразу можно сделать вывод, что промахиваются они с вероятностями $q_1=1-p_1$ и $q_2=1-p_2$.

Чтобы иметь возможность оперировать с событиями, нужно сначала их (события) ввести. Кстати, сразу заметим, что события эти независимые (то есть вероятность попадания первого стрелка не зависит от того, как стреляет второй и наоборот). Итак, пусть:
Событие $A_1$ = (Первый стрелок попал в цель),
Событие $A_2$ = (Второй стрелок попал в цель).
Соответственно, события $overline$, $overline$ обозначают промах первого и второго стрелка (не попал в цель).
Сразу можно выписать все, что нам стало известно к этому времени о данных событиях, в терминах теории вероятности (так сказать, формализуем задачу, чтобы легче было ее решать дальше): $$ P(A_1)=p_1, quad P(A_2)=p_2, quad Pleft(overline

ight)=1-p_1=q_1, quad Pleft(overline
ight)=1-p_2=q_2. $$

Теперь можно переходить к подсчету вероятностей попаданий. Например, пусть событие $X$ =(При двух выстрелах не было ни одного поражения цели). Вопрос, когда такое случится? Ясно, что когда ни первый стрелок, ни второй не попадут в цель, то есть одновременно произойдут события $overline$ и $overline$, что можно записать как произведение событий: $X=overline cdot overline$. Согласно теореме умножения вероятностей независимых событий, вероятность произведения событий равна произведению соответствующих вероятностей, или: $$ P(X)=Pleft(overline cdot overline
ight)= Pleft(overline

ight) cdot Pleft(overline
ight) = q_1 cdot q_2. qquad (1) $$

Рассмотрим еще одно событие $Y$ =(При двух выстрела ровно один стрелок попадет в цель). Как можно записать это событие через уже известные нам $A_1$ и $A_2$? Подумаем, когда такое событие произойдет:
1. Когда первый стрелок попадет в цель (событие $A_1$) и одновременно с этим второй стрелок промахнется (событие $overline$), то есть получили произведение событий $A_1 cdot overline$.
2. Когда второй стрелок попадет в цель (событие $A_2$) и одновременно с этим первый стрелок промахнется (событие $overline$), то есть получили произведение событий $overline cdot A_2$.
Так как других вариантов для получения одного попадания нет, а эти два варианта — несовместные (они не могут произойти одновроменно, или первая ситуация, или вторая), то по теореме сложения вероятностей несовместных событий: $$ P(Y) = Pleft(A_1 cdot overline
+ overline cdot A_2
ight)= Pleft(A_1 cdot overline

ight)+ Pleft( overline cdot A_2
ight) = $$ дальше уже по известной теореме умножения вероятностей раскрываем скобки: $$ = P(A_1) cdot left(overline

ight) + Pleft( overline
ight) cdot P(A_2) = p_1 cdot q_2 + q_1 cdot p_2. $$ Мы получили формулу, позволяющую найти вероятность в точности одного попадания в цель: $$ P(Y) = p_1 cdot q_2 + q_1 cdot p_2. qquad (2) $$

Если вы одолели последние пару абзацев, дальше все будет проще, поверьте:). Просто нужно привыкнуть к формулам, а потом они сами будут подсказывать вам верный ход решения.

Ну и наконец, найдем вероятность события $Z$ = (Оба стрелка попадут в цель), которое, как вы наверное и сами уже поняли, можно выразить так: $Z = A_1 cdot A_2$. Итоговая формула: $$ P(Z) = P(A_1 cdot A_2) = P(A_1) cdot P(A_2)= p_1 cdot p_2. qquad (3) $$

Большая теоретическая часть окончена, теперь можно решать примеры как орешки.

Пример 1. Два одновременно стреляют по мишени. Вероятность попадания по мишени у первого стрелка равна 0,6, у второго — 0,7. Какова вероятность того, что в мишени будет только одна пробоина?

Не будем повторять все выкладки выше, для этого мы их и делали подробно. Сразу перейдем к решению. Так как нужно найти вероятность всего одного попадания, используем формулу (2), где по условию $p_1=0,6$, $p_2=0,7$, значит $q_1=1-p_1=0,4$, $q_2=1-p_2=0,3$. Получаем: $$ P = p_1 cdot q_2 + q_1 cdot p_2 = 0,6 cdot 0,3 + 0,4 cdot 0,7 = 0,46.$$

Пример 2. Два стрелка, для которых вероятности попадания в мишень равны соответственно 0,7 и 0,8, производят по одному выстрелу. Найти вероятность того, что мишень поражена дважды.

Опять же, нужно только применить формулу (3) с данными задачи $p_1=0,7$, $p_2=0,8$ и сразу получим ответ: $$ P = p_1 cdot p_2=0,7 cdot 0,8 = 0,56. $$

Пример 3. Производятся два выстрела по цели, вероятности попадания равны 0,3 и 0,4. Найти вероятность того, что хотя бы один выстрел попал в цель.

На этот раз задача будет решена не в одно, а в два действия, но пусть это вас не пугает. Как обычно, в задачах содеражащих фразу "хотя бы один. " мы помимо основного события: $Q$ = (Хотя бы один выстрел попал в цель) вводим сразу противоположное событие $overline$ = (Ни один выстрел не попал в цель, 0 попаданий). А дальше уже известно, применяем формулу (1), которая выведена выше: $$ P(overline) = q_1 cdot q_2= (1-0,3) cdot (1-0,4) =0,7 cdot 0,6 = 0,42. $$ Вероятность нужного нам события тогда равна: $$ P(Q) = 1- P(overline) = 1 — 0,42 = 0,58. $$

Три стрелка

К двум устрелявшимся стрелкам наконец присоединяется третий, бодрый и полный сил. А мы принимаемся за вывод формул. Напомню общую постановку задачи: три стрелка, вероятности попаданий в цель которых равны $p_1$, $p_2$ и $p_3$, делают по одному выстрелу и подсчитывают число попаданий. Наша задача — вычислить вероятности 1, 2, 3 или ни одного попадания.

Начало одинаковое — формализуем задачу и вводим независимые события:
Событие $A_1$ = (Первый стрелок попал в цель),
Событие $A_2$ = (Второй стрелок попал в цель),
Событие $A_3$ = (Третий стрелок попал в цель).
Известно, что: $$ P(A_1)=p_1, quad P(A_2)=p_2, quad P(A_3)=p_3, \ Pleft(overline
ight)=1-p_1=q_1, quad Pleft(overline
ight)=1-p_2=q_2, quad Pleft(overline
ight)=1-p_3=q_3. $$

Вероятность того, что не будет ни одного попадания, вычисляется абсолютно аналогично случаю для двух стрелков, только добавляется третий сомножитель (см. формулу (1)), так как все трое должны промахнуться: $$ P_0=Pleft(overline cdot overline cdot overline
ight)= Pleft(overline

ight) cdot Pleft(overline
ight) cdot Pleft(overline
ight)= q_1 cdot q_2 cdot q_3. qquad (4) $$

Найдем вероятность события $X_1$ = (Из трех стрелков в цель попал только один). Опять таки, когда может произойти это событие? Опишем словами возможные ситуации:
1. Когда первый стрелок попадет в цель (событие $A_1$), и одновременно с этим второй стрелок промахнется (событие $overline$) и третий стрелок промахнется (событие $overline$), то есть получили произведение событий $A_1 cdot overline cdot overline$.
2. Второй стрелок попадет в цель (событие $A_2$), а первый и третий промахнутся, то есть $overline cdot A_2 cdot overline
$
3. Третий стрелок попадет в цель (событие $A_3$), а первый и второй промахнутся, то есть $overline cdot overline
cdot A_3$

Итого событие можно представить как сумму этих трех несовместных сложных событий: $$ X_1= A_1 cdot overline cdot overline + overline cdot A_2 cdot overline + overline cdot overline cdot A_3. $$ Используя теоремы сложения и умножения вероятностей, придем к итоговой формуле: $$ P_1 = P(X_1)= \ = P(A_1) cdot Pleft(overline
ight) cdot Pleft(overline
ight) + Pleft(overline
ight) cdot P(A_2) cdot Pleft(overline

ight) + Pleft(overline
ight) cdot Pleft(overline

ight) cdot P(A_3)=\ = p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3. qquad (5) $$

Желающие потренироваться в выводе формул могут на этом этапе самостоятельно попытаться выписать вероятности для 2 и 3 попаданий (соответственно, $P_2$ и $P_3$), и сравнить с теми формулами, что я приведу ниже: $$ P_2 = P(X_2)= \ = P(A_1) cdot P(A_2) cdot Pleft(overline
ight) + P(A_1)cdot Pleft(overline
ight) cdot P(A_3) + Pleft(overline
ight) cdot P(A_2) cdot P(A_3)=\ = p_1 cdot p_2 cdot q_3 + p_1 cdot q_2 cdot p_3 + q_1 cdot p_2 cdot p_3. qquad (6) $$ $$ P_3 = P(X_3)= P(A_3) cdot P(A_2) cdot P(A_3) = p_1 cdot p_2 cdot p_3. qquad (7) $$

Теперь, вооружившись формулами до зубов, снова возвращаемся к задачнику и решаем примеры буквально в одну строчку (конечно, если вы оформляете эти работы для сдачи преподавателю, используйте в решении и вывод формул, приведенный выше).

Пример 4. Три стрелка производят по одному выстрелу. Вероятности попадания 1-го, 2-го и 3-го стрелков соответственно равны: 0,2, 0,3 и 0,4. Найти вероятность получения одного попадания?

Так как речь идет об одном попадании, используем формулу (5), куда подставляем значения из условия задачи: $$ p_1=0,2, quad p_2=0,3, quad p_3=0,4, quad q_1=0,8, quad q_2=0,7, quad q_3=0,6 $$ Получаем: $$ P_1 = p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3=\ = 0,2 cdot 0,7cdot 0,6 + 0,8 cdot 0,3 cdot 0,6 + 0,8 cdot 0,7 cdot 0,4 = 0,452. $$

Пример 5. 3 стрелка делают по одному выстрелу в мишень. Вероятности попадания для каждого стрелка соответственно равны 0,8; 0,7; 0,5. Определите вероятность того, что в мишени окажется ровно 2 пробоины.

Так как речь идет о двух попаданиях, используем формулу (6), куда подставляем значения из условия задачи: $$ p_1=0,8, quad p_2=0,7, quad p_3=0,5, quad q_1=0,2, quad q_2=0,3, quad q_3=0,5 $$ Получаем: $$ P_2 = p_1 cdot p_2 cdot q_3 + p_1 cdot q_2 cdot p_3 + q_1 cdot p_2 cdot p_3 = \ = 0,8 cdot 0,7 cdot 0,5 + 0,8 cdot 0,3 cdot 0,5 + 0,2 cdot 0,7 cdot 0,5 = 0,47. $$

Пример 6. Из трех орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,7 и 0,9. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Надеюсь, вас не смутили орудия вместо стрелков? На самом деле, не суть важно, что происходит: три стрелка вышли на линию, или три пушки готовят залп, или три снайпера целятся в одного террориста. С точки зрения теории вероятностей, все формулы остаются прежними.

Задачи на формулу Бернулли

Когда я писала первый вариант статьи, этого раздела не было. Но ведь задачи, когда выстрелы попадают в цель с одинаковой вероятностью, встречаются весьма и весьма часто и фактически являются частным и более простым случаем разобранных выше. Так что перед вами дополнительный раздел, надеюсь, он окажется полезным:).

Итак, вернемся к нашим стрелкам. Теперь будем считать, что вероятность попадания в цель при каждом выстреле одинакова и равна $p$, число выстрелов равно $n$ и конечно, как и прежде, выстрелы попадают в цель независимо друг от друга. Хм. Что-то знакомое? Конечно! Это схема независимых повторных испытаний, иначе говоря, схема Бернулли.

Ну вот, скажете вы, только научились решать одним способом, и тут на тебе, "схема Бернулли"!

А я отвечу, что в ней как минимум пара преимуществ:

  • нужно запомнить всего одну формулу вместо нескольких (см. выше)
  • теперь количество стрелков может быть не только 2, 3 или 4 (что уже громоздко), а практически любое — 5, 10, 12.

Пора приступать. Сначала сама формула, а потом разберем несколько примеров для закрепления пройденного:).

Пусть производится $n$ выстрелов, вероятность попадания в цель каждом из которых равна $p$. Вероятность, что окажется в точности $k$ попаданий, можно вычислить по формуле Бернулли: $$ P_n(k)=C_n^k cdot p^k cdot (1-p)^ = C_n^k cdot p^k cdot q^. $$

Пример 7. Стрелок производит 4 выстрела, вероятность попадания при каждом из них равна $p=0,8$. Найти вероятность того, что:
1) Стрелок попадёт 3 раза
2) Стрелок попадёт не менее 3-ёх раз.

Вот она, типовая задача на формулу Бернулли. Наши параметры: $n=4$ (число выстрелов), $p=0,8$ (вероятность попадания при одном выстреле), $q=1-p=0,2$ (вероятность промаха).

1) Вероятность того, что стрелок попадёт 3 раза:

$$ P_4(3)=C_4^3 cdot 0,8^3 cdot 0,2^ <4-3>= 4 cdot 0,8^3 cdot 0,2 =0,41. $$

2) Вероятность того, что стрелок попадёт не менее 3-ёх раз из 4 (то есть или 3, или 4 раза — складываем вероятности соответствующих событий):

$$ P_4(k ge 3) =P_4(3) + P_4(4)=0,41+ C_4^4 cdot 0,8^4 cdot 0,2^ <0>= 0,41+0,8^4 =0,819. $$

И это все! Проще некуда, но не забывайте, что задачи разные, где-то формула Бернулли подходит (повторяем: вероятности одинаковые, события независимые и повторные), а где-то — нет (как в разобранных в начале этой статьи задачах).

Пример 8. Вероятность попасть в десятку у данного стрелка при одном выстреле равна 0,2. Определить вероятность выбивания не менее 20 очков при десяти выстрелах.

И опять проверяем выполнение условий схемы Бернулли: вероятности одинаковые (да, $p=0,2$), выстрелы независимые, число выстрелов задано ($n=10$).

Сформулируем вопрос задачи математически: что значит выбито не менее 20 очков? Это значит, что в 10 выстрелах было не менее 2 попаданий в цель (то есть 2, 3, 4. 10). Что-то многовато.

В таком случае проще подсчитать сначала вероятность противоположного события: "В 10 выстрелах было менее 2 попаданий в цель" (то есть 0 или 1). Вот тут полегче, давайте посчитаем:

$$ P_<10>(k lt 2) =P_<10>(0) + P_<10>(1)=C_<10>^ <0>cdot 0,2^ <0>cdot 0,8^<10>+ C_<10>^ <1>cdot 0,2^ <1>cdot 0,8^ <9>=\ =0,8^<10>+ 10 cdot 0,2 cdot 0,8^ <9>=0,376. $$

Тогда искомая вероятность выбить не менее 20 очков будет:

Другие задачи про выстрелы и попадания

Конечно же, не все задачи про выстрелы можно решать по данным формулам (точнее, не все вписываются в эту схему напрямую), это лишь один из популярных классов задач. Для полноты изложения я приведу еще несколько типовых задач с немного отличающимся решением. Задачи из существенно других разделов (например, на формулу Байеса или построение ряда распределения случайной величины) будут разобраны в других статьях.

Пример 9. Вероятность того, что стрелок попадет в цель при одном выстреле, равна 0,7. Производится пять независимых выстрелов. Какова вероятность того, что в мишени окажется хотя бы одна пробоина?

Пример 10. Два стрелка стреляют по мишени по одному разу. Вероятность того, что оба попали равна 0,42, а вероятность того что оба промахнулись, 0,12. Найти вероятность попадания в мишень каждым стрелком при одном выстреле.

Если обозначить вероятности попадания первым и вторым стрелком соответственно как $p_1$ и $p_2$, то, используя формулы (1) и (3), запишем условие задачи в виде системы уравнений: $$ P_2 = p_1 cdot p_2 = 0,42;\ P_0 = (1-p_1) cdot (1-p_2) = 0,12.\ $$ Решая эту систему, найдем искомые вероятности попадания для каждого стрелка: $p_1 = 0,6$ и $p_2 = 0,7$ (или наоборот, $p_1 = 0,7$ и $p_2 = 0,6$).

Пример 11. Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Если обозначить вероятность попадания в цель как $p$ (она одинакова при каждом выстреле), а вероятность промаха как $q=1-p$, то вероятность 4 промахов при четырех выстрелах будет равна $q^4$, а соответственно вероятность хотя бы одного попадания в цель при четырех выстрелах — $1-q^4$. Получаем уравнение: $$ 1-q^4=0,9984;\ q^4=0,0016;\ q=0,2;\ p=1-q=0,8. $$ Нашли вероятность попадания в цель при одном выстреле, она равна 0,8.

Пример 12. Два стрелка независимо выстрелили по мишени по два раза. Меткость первого стрелка равна 0,8; второго – 0,7. Найти вероятность того, что в мишень попадут все четыре пули.

Все 4 пули попадут в мишень, если первый стрелок попадет оба раза (вероятность попадания при одном выстреле у него $p_1=0,8$), и одновременно второй стрелок попадет оба раза (вероятность попадания при одном выстреле у него $p_2=0,7$). По правилу умножения вероятностей $$ P = p_1 cdot p_1 cdot p_2 cdot p_2 = 0,8 cdot 0,8 cdot 0,7 cdot 0,7 = 0,3136. $$

Полезная информация

Решебник по вероятности

В решебнике вы найдете более 700 задач о выстрелах и попаданиях с полными решениями (вводите часть текста для поиска своей задачи):