Алгоритм решения:

1. Решаемзадачу на минимум. Цель данного шага – получение максимально возможного числа нулей в матрице С. Для этого находим в матрице С в каждой строке минимальный элемент и вычитаем его из каждого элемента соответствующей строки. Аналогично в каждом столбце вычитаем соответствующий минимальный элемент.

Если задана не квадратная матрица, то делаем её квадратной, проставляя стоимости равными максимальному числу в заданной матрице.

2. Если после выполнения первого шага можно произвести назначения, то есть в каждой строке и столбце выбрать нулевой элемент, то полученное решение будет оптимальным. Если назначения провести не удалось, то переходим к третьему шагу.

3. Минимальным числом прямых вычёркиваем все нули в матрице и среди не вычеркнутых элементов выбираем минимальный, его прибавляем к элементам, стоящим на пересечении прямых и отнимаем от всех не вычеркнутых элементов. Далее переходим к шагу 2.

Венгерский метод наиболее эффективен при решении транспортных задач с целочисленными объемами производства и потребления.

Пример

Задача о назначениях является частным случаем транспортной задачи, в которой ai = bj = 1. Поэтому ее можно решать алгоритмами транспортной задачи. Рассмотрим другой метод, который является более эффективным, учитывающим специфику математической модели. Этот метод называется венгерским алгоритмом.

Он состоит из следующих шагов:

1) преобразования строк и столбцов матрицы;

2) определение назначения;

3) модификация преобразованной матрицы.

1-й шаг. Цель данного шага — получение максимально возможного числа нулевых элементов в матрице С. Для этого из всех элементов каждой строки вычитаем минимальный элемент соответствующей строки, а из всех элементов каждого столбца вычитаем минимальный элемент соответствующего столбца.

2-й шаг. Если после выполнения 1-го шага в каждой строке и каждом столбце матрицы С можно выбрать по одному нулевому элементу, то полученное решение будет оптимальным назначением.

3-й шаг. Если допустимое решение, состоящее из нулей, не найдено, то проводим минимальное число прямых через некоторые столбцы и строки так, чтобы все нули оказались вычеркнутыми. Выбираем наименьший невычеркнутый элемент. Этот элемент вычитаем из каждого невычеркнутого элемента и прибавляем к каждому элементу, стоящему на пересечении проведенных прямых.

Если после проведения 3-го шага оптимальное решение не достигнуто, то процедуру проведения прямых следует повторять до тех пор, пока не будет получено допустимое решение.

Пример.

Распределить ресурсы по объектам.

Решение. 1-й шаг. Значения минимальных элементов строк 1, 2, 3 и 4 равны 2, 4, 11 и 4 соответственно. Вычитая из элементов каждой строки соответствующее минимальное значение, получим

Значения минимальных элементов столбцов 1, 2, 3 и 4 равны 0, 0, 5, 0 соответственно. Вычитая из элементов каждого столбца соответствующее минимальное значение, получим

2-й шаг. Ни одно полное назначение не получено, необходимо провести модификацию матрицы стоимостей.

3-й шаг. Вычеркиваем столбец 1, строку 3, строку 2 (или столбец 2). Значение минимального невычеркнутого элемента равно 2:

Вычитаем его из всех невычеркнутых элементов и, складывая его со всеми элементами, расположенными на пересечении двух линий, получим

Ответ. Первый ресурс направляем на 3-й объект, второй — на 2-й объект, четвертый — на 1-й объект, третий ресурс — на 4-й объект. Стоимость назначения: 9 + 4 + 11 + 4 = 28.

Примечания. 1. Если исходная матрица не является квадратной, то нужно ввести фиктивные ресурсы или фиктивные объекты, чтобы матрица стала квадратной.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10068 — | 7511 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Предположим, что у нас имеются $4$ склада $A_1, A_2, A_3, A_4$ и $4$ магазина $B_1, B_2, B_3, B_4$. Расстояния от каждого склада до каждого магазина заданы с помощью следующей матрицы:

Например, расстояние от $A_1$ до $B_1$ равно элементу $a_<11>=10$, расстояние от $A_2$ до $B_2$ равно элементу $a_<12>=20$, и т.д.

Требуется так прикрепить склады к магазинам, чтобы суммарное расстояние получилось минимальным. Такая задача называется задачей о назначениях. Решать ее можно с помощью так называемого венгерского алгоритма.

Венгерский алгоритм

  1. В каждой строке матрицы назначения находим минимальный элемент и вычитаем его из всех элементов строки.
  2. В каждом столбце полученной матрицы находим минимальный элемент и вычитаем его из всех элементов столбца.
  3. Находим строку с одним нулем. Этот ноль заключаем в квадрат и называем отмеченным. В столбце, где стоит отмеченный ноль, все остальные нули зачеркиваем и в дальнейшем не рассматриваем. Этот шаг продолжаем, пока возможно.
  4. Находим столбец с одним нулем и этот ноль отмечаем. В строке, где стоит отмеченный ноль, все остальные нули зачеркиваются. Этот шаг продолжаем, пока возможно.
  5. Если после выполнения шагов $3$ и $4$ еще остаются неотмеченные нули, то отмечаем любой их них, а в строке и столбце, где стоит отмеченный ноль, все остальные нули зачеркиваются.
  6. Если каждая строка и каждый столбец матрицы содержит ровно один отмеченный ноль, то получено оптимальное решение. Каждый из отмеченных нулей прикрепляет поставщика к потребителю. В противном случаем проводим минимальное количество пересекающихся вертикальных и горизонтальных прямых через все нули. Среди не зачеркнутых этими прямыми чисел ищем минимум. Этот минимум вычитаем их всех не зачеркнутых чисел и прибавляем ко всем числам на пересечении прямых. К полученной матрице применяем вышеприведенный алгоритм, начиная с шага $3$.

Пример решения

Находим минимальный элемент в каждой строке матрицы и вычитаем его из всех элементов строки.

В полученной матрице проделываем тоже самое со столбцами, то есть находим в каждом столбце минимальный элемент и вычитаем его из всех элементов столбца.

В первой строке полученной матрицы находится ровно один ноль. Отмечаем его, а в столбце, где стоит этот ноль все остальные нули зачеркиваем. Получим матрицу:

Следующая строка, в который находится ровно один ноль, это $4$-я. С ней поступаем точно так же. Больше нет строк, содержащих ровно один ноль, но имеются столбцы с одним нулем. Второй столбец содержит ровно один ноль, который мы и отметим. Поскольку этот ноль находится в $3$-й строке, то вычеркиваем все нули, находящиеся в $3$-й строке. Получим матрицу:

Видим, что в матрице больше нет нулей. Полученное распределение не является оптимальным, поскольку во второй строке нет отмеченных нулей. Проводим минимальное количество пересекающихся вертикальных и горизонтальных прямых через все нули.

Находим минимальный элемент среди не зачеркнутых этими прямыми чисел: $<min left(5, 13, 7, 2, 11, 8
ight) >=2$. Вычитаем найденный минимум из всех не зачеркнутых чисел и прибавляем его ко всем числам, стоящими на пересечении прямых. Получим матрицу:

К полученной матрицы применяем вышеописанный алгоритм:

Полученное распределение не является оптимальным, поскольку в $4$-й строке нет отмеченных нулей. Проводим прямые:

$<min left(11, 5, 9, 6, 6, 1
ight) >=1$. Вычитаем найденный минимум из всех не зачеркнутых чисел и прибавляем его ко всем числам, стоящими на пересечении прямых. Получим матрицу:

К полученной матрицы применяем вышеописанный алгоритм:

Видим, что в каждой строке и в каждом столбце матрицы находится ровно один отмеченный ноль. Получено оптимальное распределение. $A_1$ прикрепляем к $B_4$, $A_2$ — к $B_1$, $A_3$ — к $B_2$, $A_4$ — к $B_3$. Для того, чтобы найти суммарное распределение, нужно сложить числа, расположенные в исходной матрице на месте отмеченных нулей. Получим: $5+3+8+8=24$.

Стоит отметить, что задача о назначениях может решаться и на максимум (чтобы суммарное расстояние было максимальным). В этом случае каждый элемент матрицы умножается на $-1$ и к полученной матрице применяется вышеописанный алгоритм.

Привет, друзья! В этой статье хотел бы рассказать про интересный алгоритм из дисциплины «Исследование операций» а именно про Венгерский метод и как с его помощью решать задачи о назначениях. Немного затрону теории про то, в каких случаях и для каких задач применим данный алгоритм, поэтапно разберу его на мною выдуманном примере, и поделюсь своим скромным наброском кода его реализации на языке R. Приступим!

Пару слов о методе

Для того чтобы не расписывать много теории с математическими терминами и определениями, предлагаю рассмотреть пару вариантов построения задачи о назначениях, и я думаю Вы сразу поймете в каких случаях применим Венгерский метод:

  • Задача о назначении работников на должности. Необходимо распределить работников на должности так, чтобы достигалась максимальная эффективность, или были минимальные затраты на работу.
  • Назначение машин на производственные секции. Распределение машин так, чтобы при их работе производство было максимально прибыльным, или затраты на их содержание минимальны.
  • Выбор кандидатов на разные вакансии по оценкам. Этот пример разберем ниже.

Как Вы видите, вариантов для которых применим Венгерский метод много, при этом подобные задачи возникают во многих сферах деятельности.

В итоге задача должна быть решена так, чтобы один исполнитель (человек, машина, орудие, …) мог выполнять только одну работу, и каждая работа выполнялась только одним исполнителем.

Необходимое и достаточное условие решения задачи – это ее закрытый тип. Т.е. когда количество исполнителей = количеству работ (N=M). Если же это условие не выполняется, то можно добавить вымышленных исполнителей, или вымышленные работы, для которых значения в матрице будут нулевыми. На решение задачи это никак не повлияет, лишь придаст ей тот необходимый закрытый тип.

Step-by-step алгоритм на примере

Постановка задачи: Пусть намечается важная научная конференция. Для ее проведения необходимо настроить звук, свет, изображения, зарегистрировать гостей и подготовиться к перерывам между выступлениями. Для этой задачи есть 5 организаторов. Каждый из них имеет определенные оценки выполнения той, или иной работы (предположим, что эти оценки выставлены как среднее арифметическое по отзывам их сотрудников). Необходимо распределить организаторов так, чтобы суммарная их оценка была максимальной. Задача имеет следующий вид:

Если задача решается на максимум (как в нашем случае), то в каждой строке матрицы необходимо найти максимальный элемент, его же вычесть из каждого элемента соответствующей строки и умножить всю матрицу на -1. Если задача решается на минимум, то этот шаг необходимо пропустить.

В каждой строке и в каждом столбце должен быть только один выбранный ноль. (т.е. когда выбрали ноль, то остальные нули в этой строке или в этом столбце уже не берем в расчет). В этом случае это сделать невозможно:

(Если задача решается на минимум, то необходимо начинать с этого шага). Продолжаем решение далее. Редукция матрицы по строкам (ищем минимальный элемент в каждой строке и вычитаем его из каждого элемента соответственно):

Т.к. все минимальные элементы – нулевые, то матрица не изменилась. Проводим редукцию по столбцам:

Опять же смотрим чтобы в каждом столбце и в каждой строке был только один выбранный ноль. Как видно ниже, в данном случае это сделать невозможно. Представил два варианта как можно выбрать нули, но ни один из них не дал нужный результат:

Продолжаем решение дальше. Вычеркиваем строки и столбцы, которые содержат нулевые элементы (ВАЖНО! Количество вычеркиваний должно быть минимальным). Среди оставшихся элементов ищем минимальный, вычитаем его из оставшихся элементов (которые не зачеркнуты) и прибавляем к элементам, которые расположены на пересечении вычеркнутых строк и столбцов (то, что отмечено зеленым – там вычитаем; то, что отмечено золотистым – там суммируем; то, что не закрашено – не трогаем):

Как теперь видно, в каждом столбце и строке есть только один выбранный ноль. Решение задачи завершаем!

Подставляем в начальную таблицу месторасположения выбранных нулей. Таким образом мы получаем оптимум, или оптимальный план, при котором организаторы распределены по работам и сумма оценок получилась максимальной:

Если же вы решаете задачу и у вас до сих пор невозможно выбрать нули так, чтобы в каждом столбце и строке был только один, тогда повторяем алгоритм с того места где проводилась редукция по строкам (минимальный элемент в каждой строке).

Реализация на языке программирования R

Венгерский алгоритм реализовал с помощью рекурсий. Буду надеяться что мой код не будет вызывать трудностей. Для начала необходимо скомпилировать три функции, а затем начинать расчеты.

Данные для решения задачи берутся из файла example.csv который имеет вид:

Результат выполнения программы:

В завершение

Спасибо большое что потратили время на чтение моей статьи. Все используемые ссылки предоставлю ниже. Надеюсь, Вы узнали что-то для себя новое или обновили старые знания. Всем успехов, добра и удачи!

Используемые ресурсы

AdBlock похитил этот баннер, но баннеры не зубы — отрастут