Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:

(Здесь 0 <displaystyle 0> — бесконечно малая величина, а ∞ <displaystyle infty > — бесконечно большая величина)

по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.

Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.

Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки. Для раскрытия неопределённостей видов ( 0 0 ) <displaystyle left(

0^<0>
ight)> , ( 1 ∞ ) <displaystyle left(1^<infty >
ight)> , ( ∞ 0 ) <displaystyle left(infty ^<0>
ight)> пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.

0^<0>
ight)=left(e^<0cdot ln <0>>
ight)=left(e^<0cdot (-infty )>
ight)> ( 1 ∞ ) = ( e ∞ ⋅ ln ⁡ 1 ) = ( e ∞ ⋅ 0 ) <displaystyle left(

1^<infty >
ight)=left(e^<infty cdot ln <1>>
ight)=left(e^<infty cdot 0>
ight)> ( ∞ 0 ) = ( e 0 ⋅ ln ⁡ ∞ ) = ( e 0 ⋅ ∞ ) <displaystyle left(

infty ^<0>
ight)=left(e^<0cdot ln <infty >>
ight)=left(e^<0cdot infty >
ight)>

Для раскрытия неопределённостей типа ∞ ∞ <displaystyle <frac <infty ><infty >>> используется следующий алгоритм:

  1. Выявление старшей степени переменной;
  2. Деление на эту переменную как числителя, так и знаменателя.

Для раскрытия неопределённостей типа ( 0 0 ) <displaystyle left(<frac <0><0>>
ight)> существует следующий алгоритм:

  1. Разложение на множители числителя и знаменателя;
  2. Сокращение дроби.

Для раскрытия неопределённостей типа ( ∞ − ∞ ) <displaystyle (infty -infty )> иногда удобно применить следующее преобразование:

Пусть f ( x ) → x → a ∞ <displaystyle f(x)<xrightarrow >infty > и g ( x ) → x → a ∞ <displaystyle g(x)<xrightarrow >infty > ; lim x → a [ f ( x ) − g ( x ) ] = ( ∞ − ∞ ) = lim x → a ( 1 1 f ( x ) − 1 1 g ( x ) ) = lim x → a 1 g ( x ) − 1 f ( x ) 1 g ( x ) ⋅ 1 f ( x ) = ( 0 0 ) <displaystyle lim _[f(x)-g(x)]=(infty -infty )=lim _left(<frac <1><frac <1>>>-<frac <1><frac <1>>>
ight)=lim _<frac <<frac <1>>-<frac <1>>><<frac <1>>cdot <frac <1>>>>=left(<frac <0><0>>
ight)> .

Данный вид неопределённостей может раскрываться с использованием асимптотических разложений уменьшаемого и вычитаемого, при этом бесконечно большие члены одного порядка должны уничтожаться.

При раскрытии неопределённостей также применяются замечательные пределы и их следствия.

Пример [ править | править код ]

0>"> lim x → a a x − x a x − a , a > 0 <displaystyle lim _<frac -x^>>,a>0> 0>"/> — пример [1] неопределённости вида ( 0 0 ) <displaystyle left(<frac <0><0>>
ight)> . По правилу Лопиталя lim x → a a x − x a x − a = lim x → a a x ln ⁡ a − a x a − 1 1 = a a ( ln ⁡ a − 1 ) <displaystyle lim _<frac
-x^>>=lim _<frac ln a-ax^><1>>=a^(ln a-1)> . Второй способ — прибавить и отнять в числителе a a <displaystyle a^> и дважды применить теорему Лагранжа, к функциям a x <displaystyle a^> и x a <displaystyle x^> соответственно:

a x − x a x − a = a x − a a − ( x a − a a ) x − a = a c ln ⁡ a ( x − a ) − a d a − 1 ( x − a ) x − a = a c ln ⁡ a − a d a − 1 <displaystyle <frac -x^>>=<frac -a^-(x^-a^)>>=<frac ln a(x-a)-ad^(x-a)>>=a^ln a-ad^>

здесь c, d лежат между a и x, поэтому они стремятся к a при x стремящемся к a, отсюда получаем тот же предел, что и в первом способе.

В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.

Выделяют следующие основные виды неопределенностей:

  1. Деление 0 на 0 " open=" 0 0 ;
  2. Деление одной бесконечности на другую " open=" ∞ ∞ ;

0 , возведенный в нулевую степень " open=" 0 0 ;

  • бесконечность, возведенная в нулевую степень " open=" ∞ 0 .
  • Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.

    Раскрытие неопределенностей

    Раскрыть неопределенность можно:

      С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др. );

    С помощью замечательных пределов;

    С помощью правила Лопиталя;

    Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).

    Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.

    НеопределенностьМетод раскрытия неопределенности
    1. Деление 0 на 0Преобразование и последующее упрощение выражения. Если выражение имеет вид sin ( k x ) k x или k x sin ( k x ) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений
    2. Деление бесконечности на бесконечностьПреобразование и упрощение выражения либо использование правила Лопиталя
    3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностямиПреобразование в " open=" 0 0 или " open=" ∞ ∞ с последующим применением правила Лопиталя
    4. Единица в степени бесконечностиИспользование второго замечательного предела
    5. Возведение нуля или бесконечности в нулевую степеньЛогарифмирование выражения с применением равенства lim x → x 0 ln ( f ( x ) ) = ln lim x → x 0 f ( x )

    Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.

    Вычислите предел lim x → 1 x 3 + 3 x — 1 x 5 + 3 .

    Решение

    Выполняем подстановку значений и получаем ответ.

    lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 1 3 + 3 · 1 — 1 1 5 + 3 = 3 4 = 3 2

    Ответ: lim x → 1 x 3 + 3 x — 1 x 5 + 3 = 3 2 .

    Вычислите предел lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 .

    Решение

    У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .

    ( x 2 + 2 , 5 ) x = 0 = 0 2 + 2 , 5 = 2 , 5

    Значит, мы можем преобразовать предел в следующее выражение:

    lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2

    Теперь разберемся с показателем – степенной функцией 1 x 2 = x — 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x — 2 = + ∞

    Таким образом, можно записать, что lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .

    Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:

    lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞

    Ответ: lim x → 0 ( x 2 + 2 , 5 ) 1 x 2 = + ∞ .

    Далее мы приведем примеры решений задач на раскрытие неопределенностей с использованием метода преобразования. На практике выполнять это приходится довольно часто.

    Вычислите предел lim x → 1 x 2 — 1 x — 1 .

    Решение

    Выполняем подстановку значений.

    lim x → 1 x 2 — 1 x — 1 = 1 2 — 1 1 — 1 = " open=" 0 0

    В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.

    lim x → 1 x 2 — 1 x — 1 = " open=" 0 0 = lim x → 1 ( x — 1 ) · ( x + 1 ) x — 1 = = lim x → 1 ( x — 1 ) · ( x + 1 ) · ( x + 1 ) x — 1 = lim x → 1 ( x + 1 ) · x — 1 = = 1 + 1 · 1 — 1 = 2 · 0 = 0

    Как мы видим, упрощение привело к раскрытию неопределенности.

    Ответ: lim x → 1 x 2 — 1 x — 1 = 0

    Вычислите предел lim x → 3 x — 3 12 — x — 6 + x .

    Решение

    Подставляем значение и получаем запись следующего вида.

    lim x → 3 x — 3 12 — x — 6 + x = 3 — 3 12 — 3 — 6 + 3 = 0 9 — 9 = " open=" 0 0

    Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 — x + 6 + x :

    lim x → 3 x — 3 12 — x — 6 + x = " open=" 0 0 = lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x

    Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.

    lim x → 3 x — 3 12 — x + 6 + x 12 — x — 6 + x 12 — x + 6 + x = lim x → 3 x — 3 12 — x + 6 + x 12 — x 2 — 6 + x 2 = lim x → 3 ( x — 3 ) 12 — x + 6 + x 12 — x — ( 6 + x ) = = lim x → 3 ( x — 3 ) 12 — x + 6 + x 6 — 2 x = lim x → 3 ( x — 3 ) 12 — x + 6 + x — 2 ( x — 3 ) = = lim x → 3 12 — x + 6 + x — 2 = 12 — 3 + 6 + 3 — 2 = 9 + 9 — 2 = — 9 = — 3

    Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.

    Ответ: lim x → 3 x — 3 12 — x — 6 + x = — 3 .

    Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.

    Вычислите предел lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 .

    Решение

    lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 1 2 + 2 · 1 — 3 3 · 1 2 — 5 · 1 + 2 = " open=" 0 0

    В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х — 1 ,и тогда неопределенность исчезнет.

    Выполняем разложение числителя на множители:

    x 2 + 2 x — 3 = 0 D = 2 2 — 4 · 1 · ( — 3 ) = 16 ⇒ x 1 = — 2 — 16 2 = — 3 x 2 = — 2 + 16 2 = 1 ⇒ x 2 + 2 x — 3 = x + 3 x — 1

    Теперь делаем то же самое со знаменателем:

    3 x 2 — 5 x + 2 = 0 D = — 5 2 — 4 · 3 · 2 = 1 ⇒ x 1 = 5 — 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 — 5 x + 3 = 3 x — 2 3 x — 1

    Мы получили предел следующего вида:

    lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = " open=" 0 0 = lim x → 1 x + 3 · x — 1 3 · x — 2 3 · x — 1 = = lim x → 1 x + 3 3 · x — 2 3 = 1 + 3 3 · 1 — 2 3 = 4

    Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.

    Ответ: lim x → 1 x 2 + 2 x — 3 3 x 2 — 5 x + 2 = 4 .

    Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.

    Например, lim x → ∞ ( x 4 + 2 x 3 — 6 ) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 — 11 5 = lim x → ∞ x 4 5 = ∞ .

    Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида " open=" ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x ( m , n ) . Приведем пример решения подобной задачи.

    Вычислите предел lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 .

    Решение

    lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = " open=" ∞ ∞

    Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:

    lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 — 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 — 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 — 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 — 0 3 + 0 = 1 3

    Ответ: lim x → ∞ x 7 + 2 x 5 — 4 3 x 7 + 12 = 1 3 .

    Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .

    Решение

    lim x → ∞ x 8 + 11 3 x 2 + x + 1 = " open=" ∞ ∞

    Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3 :

    lim x → ∞ x 8 + 11 3 x 2 + x + 1 = " open=" ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞

    Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .

    Вычислите предел lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 .

    Решение

    lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = " open=" ∞ ∞

    У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3 :

    lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = " open=" ∞ ∞ = lim x → ∞ x 3 + 2 x 2 — 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 — 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ — 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 — 0 1 + 0 + 0 3 = 0

    Ответ: lim x → ∞ x 3 + 2 x 2 — 1 x 10 + 56 x 7 + 12 3 = 0 .

    Выводы

    В случае с пределом отношений возможны три основных варианта:

    Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.

    Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.

    Если степень числителя меньше степени знаменателя, то предел будет равен нулю.

    Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.

    Сразу скажу, что все, что я опишу — не совпадает с классической математикой, а является лишь рассуждением и предположением.
    Деление на ноль дает бесконечность. Умножение нуля на +бесконечность дает набор чисел от 0 до +бесконечности. Возведение 0 в 0-вую степень дает набор чисел от -бесконечности до +бесконечности.

    Делить на 0 запрещено. Так учили в школе. Но если поразмышлять, то деление на ноль даст ответ бесконечность. Под бесконечностью здесь понимается не все числа вместе взятые, а какое-то абстрактное число, которое больше любого другого. То есть, число без границ. Так, например деление 3 на 0.1 даст 30; 3 на 0.01 — 300; 3 на 0.0000001 даст 30000000. Как видно, чем ближе число к нулю, тем больше нулей будет после числа в ответе. Тем большим будет число. В итоге, если поделить на сам 0, будет число с бесконечным числом нулей после него. Поскольку нулей бесконечно, то это число равно бесконечности.

    2. Умножение 0 на бесконечность.

    Еще один запрещенный метод. Классически он дает неопределенность. Но если порассуждать логически, то ответом будут все числа от 0 до +бесконечности.
    Кстати, что любопытно, это правило применимо в повседневной жизни постоянно. Без него было бы невозможным существование пространства и геометрических фигур, включая гаджет, с которого вы читаете этот текст. Наше пространство трехмерно, но трехмерные фигуры, например дома, в которых мы живем состоят из бесконечного множества двухмерных срезов с нулевой толщиной и ненулевой длинной и высотой. И из таких двухмерных срезов с нулевой толщиной образуются различные фигуры с различной толщиной. Вот и получается бесконечность (бесконечно срезов) * 0 (нулевая толщина) = предметы с разной толщиной. В свою очередь двухмерные срезы с нулевой толщиной состоят из бесконечного множества одномерных линий с нулевой высотой, а те в свою очередь состоят из бесконечного множества нольмерных точек, которые вообще не имеют размера. Получается, что все фигуры в мире, включая людей, Землю и Вселенную являются результатом умножения 0 на бесконечность.
    Отрицательные числа не подходят. Подходят только положительные. Потому, что если 3 / 0 = +бесконечность, то +бесконечность * 0 = 3. Но в то же время, уравнение будет справедливо если вместо 3 поставить 5 или 3.14, или 8642963.7875, или любое другое положительное число. А вот если взять отрицательное число, то -3 / 0=-бесконечность. А потому +бесконечность*0 не равно -3, или любому другому отрицательному числу. Кстати, возможность нескольких правильных ответов вместо 1 — не такая уж и редкость. Например, в квадратных уравнениях часто получается 2 правильных ответа. Во многих других уравнения, бывает набор правильных ответов, при извлечении квадратного корня подходят 2 ответа, а при умножении 0 на +бесконечность подходит набор положительных чисел от 0 до +бесконечность.

    3. Возведение 0 в степень 0.

    Данный прием и вовсе даст набор ответов от -бесконечность до +бесконечность. Обычно при возведении числа в степень 0 будет 1, потому, что, например 4^0 * 4^2 = 4^(0+2) = 4^2, отсюда следует, что 4^0 = 1. Но если возводить 0 в любую степень, то обычно получается 0. Если же применим упомянутый метод, то получится, что 0^0 * 0^2 = 0^(0+2) = 0^2 = 0. Чему тогда равно 0^0? Да чему угодно, потому, что любое число, умноженное на 0, как положительное, так и отрицательное дает 0. В итоге, 0^0 * 0^2 = 3 * 0^2 = -3 * 0^2 = 1.028 * 0^2 = 0. Кстати, поскольку 0 * бесконечность = 0. +бесконечность, которая включает 0, как частный случай, то и +бесконечность тоже подходит. Аналогично будет и для -бесконечность. Поэтому 0^0 = набор чисел от -бесконечность до +бесконечность.

    Пока что напишу об этих трех вещах, которые заметил. Может быть позже напишу еще о некоторых.