Для современных холодильников одной из самых распространенных проблем является засор капиллярной трубки. Связано это с тем, что на рынок стали поступать модели нового поколения, обладающие большой мощностью. Последние конструкции компрессоров имеют высокий допуск нагрева. В холодильной технике используются новые марки масел.

Что такое капиллярная трубка в холодильнике

Капиллярные трубки широко применяются в холодильной технике. Они представляют собой специальные регуляторы для потока хладагента. Диаметр трубки варьируется от 0,6 мм до 0,8 мм. Длина детали 2.800 – 8.500 мм. Ее изготавливают из меди. Капилляр отличается простой конструкцией. В трубе нет движущихся частей. Она считается надежной при эксплуатации.

Роль капиллярной трубки

Через капиллярную трубку хладагент поступает в испаритель. Это соединяющий элемент между сторонами всасывания и нагнетения, который обладает способностью уравнивать давление системы. Ее использование позволяет снижать противодействие на поршень мотора с компрессором при запуске, поэтому в холодильной технике может применяться электродвигатель, имеющий небольшой пусковой момент. Капиллярная и всасывающая трубка прочно соединены между собой. Вместе они представляют собой теплообменник. Благодаря работе этого устройства значительно уменьшается вероятный риск проникновения жидкого хладона внутрь компрессора.

  1. Основные поломки, связанные с выходом из строя капиллярной трубки

Причины появления засоров в капиллярных трубках даже в качественных холодильных агрегатах таких, как LG, могут быть следующими:

  1. Геометрия внутреннего диаметра у трубки сужается.
  2. Геометрия внутреннего диаметра у трубки расширяется.
  3. Образуются липкие компоненты, создающие пробку.

В первом случае перед тем, как появится складка, скапливается механическая взвесь. Она взаимодействует с составляющими масла, обладающими большой вязкостью, после чего уплотняется. Сужение диаметра капиллярной трубки может происходить и по другой причине: мельчайшие частицы могут смерзаться на участке, расположенном рядом с впрыском в испаритель. Холодильник Samsung не сможет исправно работать, когда засор уплотнится.

Когда оговорят о расширении геометрии, подразумевают, что в капиллярной трубке появляется так называемый «карман», где оседают крупные частицы. Продавить пробку достаточно трудно. Можно попробовать пропитать засор с помощью моющего раствора, а потом хорошо промыть ее.

В системе холодильника свободно перемещаются парафины и другие компоненты. Они выделяются из масла и оседают в капиллярной трубке. Происходит это в 20-30 см от входа в испаритель в результате резкого охлаждения.

По своему составу засоры классифицируются на несколько групп:

  • темный или серый порошок;
  • коричневая пластичная масса;
  • темные хлопья;
  • гелеобразная масса.

Порошок – результат распада гранул осушителя. Его удаляют, благодаря пропитке пробки с помощью моющего раствора и приложения давления к трубке. Если холодильник Ардо имеет засоренную капиллярную трубу веществом, похожим на пластилин, тогда это, действительно большая проблема. Ее причина – коррозия черных металлов. Засор из пластичной массы пропитывается моющим раствором, а затем пробка продавливается. Хлопья могут быть частицами технологического мусора или лакокрасочных материалов, они легко устраняются. Темная масса в виде геля образуется в результате парафинизации масла и вступления хладагента в химические реакции. Избавиться от такого засора не составит труда: достаточно приложить давление к капиллярной трубке. Если в холодильнике засорился капилляр, то избавиться от пробки рекомендуется, как можно скорее.

Для современных холодильников одной из самых распространенных проблем является засор капиллярной трубки. Связано это с тем, что на рынок стали поступать модели нового поколения, обладающие большой мощностью. Последние конструкции компрессоров имеют высокий допуск нагрева. В холодильной технике используются новые марки масел.

Что такое капиллярная трубка в холодильнике

Капиллярные трубки широко применяются в холодильной технике. Они представляют собой специальные регуляторы для потока хладагента. Диаметр трубки варьируется от 0,6 мм до 0,8 мм. Длина детали 2.800 – 8.500 мм. Ее изготавливают из меди. Капилляр отличается простой конструкцией. В трубе нет движущихся частей. Она считается надежной при эксплуатации.

Роль капиллярной трубки

Через капиллярную трубку хладагент поступает в испаритель. Это соединяющий элемент между сторонами всасывания и нагнетения, который обладает способностью уравнивать давление системы. Ее использование позволяет снижать противодействие на поршень мотора с компрессором при запуске, поэтому в холодильной технике может применяться электродвигатель, имеющий небольшой пусковой момент. Капиллярная и всасывающая трубка прочно соединены между собой. Вместе они представляют собой теплообменник. Благодаря работе этого устройства значительно уменьшается вероятный риск проникновения жидкого хладона внутрь компрессора.

  1. Основные поломки, связанные с выходом из строя капиллярной трубки

Причины появления засоров в капиллярных трубках даже в качественных холодильных агрегатах таких, как LG, могут быть следующими:

  1. Геометрия внутреннего диаметра у трубки сужается.
  2. Геометрия внутреннего диаметра у трубки расширяется.
  3. Образуются липкие компоненты, создающие пробку.

В первом случае перед тем, как появится складка, скапливается механическая взвесь. Она взаимодействует с составляющими масла, обладающими большой вязкостью, после чего уплотняется. Сужение диаметра капиллярной трубки может происходить и по другой причине: мельчайшие частицы могут смерзаться на участке, расположенном рядом с впрыском в испаритель. Холодильник Samsung не сможет исправно работать, когда засор уплотнится.

Когда оговорят о расширении геометрии, подразумевают, что в капиллярной трубке появляется так называемый «карман», где оседают крупные частицы. Продавить пробку достаточно трудно. Можно попробовать пропитать засор с помощью моющего раствора, а потом хорошо промыть ее.

В системе холодильника свободно перемещаются парафины и другие компоненты. Они выделяются из масла и оседают в капиллярной трубке. Происходит это в 20-30 см от входа в испаритель в результате резкого охлаждения.

По своему составу засоры классифицируются на несколько групп:

  • темный или серый порошок;
  • коричневая пластичная масса;
  • темные хлопья;
  • гелеобразная масса.

Порошок – результат распада гранул осушителя. Его удаляют, благодаря пропитке пробки с помощью моющего раствора и приложения давления к трубке. Если холодильник Ардо имеет засоренную капиллярную трубу веществом, похожим на пластилин, тогда это, действительно большая проблема. Ее причина – коррозия черных металлов. Засор из пластичной массы пропитывается моющим раствором, а затем пробка продавливается. Хлопья могут быть частицами технологического мусора или лакокрасочных материалов, они легко устраняются. Темная масса в виде геля образуется в результате парафинизации масла и вступления хладагента в химические реакции. Избавиться от такого засора не составит труда: достаточно приложить давление к капиллярной трубке. Если в холодильнике засорился капилляр, то избавиться от пробки рекомендуется, как можно скорее.

Капиллярные трубки относятся к расширительным устройствам и представляют собой дроссель постоянного сечения (регулирующий орган), где разность давлений конденсации Рк и кипения Р0 хладагента обеспечивается за счет гидравлического сопротивления по всей ее длине. Конструктивно капиллярная трубка представляет собой медный или латунный трубопровод с внутренним диаметром 0,66 мм и более и длиной 2800-8500 мм, соединяющий стороны высокого и низкого давления в холодильной системе. Данное расширительное устройство не содержит никаких механических движущихся узлов и деталей и не требует никаких средств регулирования и настройки в отличие от терморегулирующих вентилей (ТРВ), что обеспечивает его высокую надежность и продолжительность работы в течение достаточно длительного времени, а также низкую его стоимость. Многочисленные преимущества данного устройства объясняют его выбор для оснащения им самых различных холодильных установок малой мощности: бытовые холодильники и морозильники, системы кондиционирования воздуха, малые тепловые насосы, холодильные шкафы и прилавки.

На капиллярные трубки для холодильных машин распространяется ГОСТ 2624-67 «Трубки капиллярные медные и латунные» с дополнениями. Таблица стандартных размеров капиллярных трубок включает 24 размера и охватывает диапазон внутренних диаметров от 0,66 до 4,45 мм; шаг градации по внутренним диаметрам составляет в среднем 1,032; а по проходным сечениям от 1,13 до 1,24, в среднем 1,17.

Лучшими считаются трубки с калиброванным каналом, относящиеся к группе 5. Установлены одинаковый наружный диаметр 2±0,10 мм и три размера для внутреннего диаметра: 0,80; 0,82 и 0,85 мм. Овальность трубок — до ±0,10 мм. Пропускная способность капиллярной трубки составляет 3,5-8,5 л/мин.

Пропускная способность трубок должна находиться в следующих пределах (табл. 1).

Пропускную способность трубок проверяют ротаметром или другим расходомером, либо по эталонам, по соглашению между потребителем и заводом-изготовителем.

Пропускная способность капиллярных трубок

Диаметр dвн, ммДавление воздуха у входаПропускная способность, л/мин.
МПакгс/см 2
0,800,885,9÷6,5
0,820,886,5÷8,5
0,850,553,5÷3,9

За рубежом к капиллярным трубкам предъявляют более жесткие требования в отношении размеров, материала и их качества. Наружный диаметр имеет допуск dн ±0,051 мм, внутренний dвн ±0,025 мм.

В расчетном режиме капиллярные трубки должны обеспечивать пропускную способность протекания хладагента в количестве, точно равном массовой производительности компрессора.

Наружная и внутренняя поверхности трубок должны быть чистыми, канал — не загрязнен пылью, маслом, окалиной.

Трубки проверяются на герметичность (под водой) давлением 4-5 МПа, а по требованию потребителя 7-8 МПа.

Рассмотрим работу капиллярной трубки (КТ) в малой холодильной установке, содержащей герметичный компрессор (КМ) небольшой мощности, конденсатор (КД) и прибор охлаждения (ВО) с принудительной циркуляцией воздуха (рис. 1).

Рис. 1. Схема малой холодильной установки с капиллярной трубкой:
КМ — компрессор; КД — конденсатор; Ф — фильтр-осушитель; ВО — воздухоохладитель;
ВР1 и ВР2 -вентиляторы; КТ — капиллярная трубка

Пары, всасываемые компрессором из воздухоохладителя с давлением Рвс, поступают в верхнюю часть компрессора (1), охлаждают электродвигатель компрессора и после сжатия покидают компрессор из его нижней части (2). Поэтому нижняя часть компрессора имеет значительно более высокую температуру по сравнению с верхней. Нагнетаемые пары далее поступают в конденсатор, где осуществляется конденсация паров хладагента при постоянном давлении Рк и переохлаждение жидкого хладагента. Переохлажденная жидкость проходит через фильтр-осушитель и через капиллярную трубку заполняет охлаждающий прибор. Хладагент после дросселирования в (КТ) проходит через воздухоохладитель и в состоянии перегретого пара поступает снова в компрессор.

Капиллярная трубка, соединяющая линии нагнетания и всасывания, уравнивает давление в холодильной системе при остановке компрессора. Это способствует разгрузке компрессора в момент пуска и позволяет использовать электродвигатели с небольшим пусковым моментом. В результате при остановке компрессора конденсатор освобождается от хладагента, а прибор охлаждения заполняется им. Поэтому при наличии капиллярной трубки в холодильном контуре отпадает необходимость применения ресивера, поскольку в противном случае возможен гидравлический удар в компрессоре из-за переполнения прибора охлаждения жидким хладагентом.

К недостаткам холодильных агрегатов с капиллярной трубкой относятся:

    снижение эффективности работы при изменении температуры окружающей среды и тепловых нагрузок;

    повышенная чувствительность к влаге, загрязнениям и утечкам хладагента;

    снижение холодопроизводительности агрегата при минимальных утечках хладагента или засорении капиллярной трубки.

    К холодильному агрегату с капиллярной трубкой предъявляют следующие требования:

      вместимость конденсатора должна быть меньше вместимости прибора охлаждения, иначе возможно переполнение прибора охлаждения после остановки компрессора;

      в конденсаторе должен помещаться весь хладагент, содержащийся в системе, на случай замерзания или засорения капиллярной трубки;

      обязательное применение надежных фильтров-осушителей, размещаемых между конденсатором и капиллярной трубкой;

      обязательна достаточная длительность нерабочей части цикла для разгрузки компрессора.

      Роль выравнивания давлений при запуске компрессора. При остановке компрессора происходит выравнивание давлений в конденсаторе и приборе охлаждения, т.е. Рк≈Р0.

      При пуске компрессора давление нагнетания повышается не мгновенно, а постепенно до достижения номинального значения давления конденсации. Это означает, что ток, потребляемый электродвигателем компрессора, постепенно растет одновременно с ростом давления нагнетания. Следовательно, запуск компрессора осуществляется в облегченных условиях, без особых усилий при малых значениях пускового тока. Выравнивание давлений при остановке компрессора, обусловленное наличием капилляра, позволяет благодаря облегченному режиму запуска компрессора использовать электродвигатели небольшой мощности и пускового момента, ввиду отсутствия значительного момента сопротивления на валу компрессора. Следовательно, при массовом и крупносерийном производстве установки, снабженные однофазными электродвигателями (бытовые холодильники, кондиционеры и т.п.) получают значительный экономический эффект.