Определение. Линейной комбинацией векторов a 1, . an с коэффициентами x 1, . xn называется вектор

Свойства линейно зависимых векторов:

Примеры задач на линейную зависимость и линейную независимость векторов:

Вектора будут линейно зависимыми, так как размерность векторов меньше количества векторов.

Решение: Найдем значения коэффициентов при котором линейная комбинация этих векторов будет равна нулевому вектору.

Это векторное уравнение можно записать в виде системы линейных уравнений

x 1 + x 2 = 0
x 1 + 2 x 2 — x 3 = 0
x 1 + x 3 = 0

Решим эту систему используя метод Гаусса

1 1 0 0 1 2 -1 0 1 0 1 0

из второй строки вычтем первую; из третей строки вычтем первую:

1 1 0 0 1 — 1 2 — 1 -1 — 0 0 — 0 1 — 1 0 — 1 1 — 0 0 — 0

1 1 0 0 0 1 -1 0 0 -1 1 0

из первой строки вычтем вторую; к третей строке добавим вторую:

1 — 0 1 — 1 0 — (-1) 0 — 0 0 1 -1 0 0 + 0 -1 + 1 1 + (-1) 0 + 0

1 0 1 0 0 1 -1 0 0 0 0 0

Данное решение показывает, что система имеет множество решений, то есть существует не нулевая комбинация значений чисел x 1, x 2, x 3 таких, что линейная комбинация векторов a , b , c равна нулевому вектору, например:

а это значит вектора a , b , c линейно зависимы.

Ответ: вектора a , b , c линейно зависимы.

Решение: Найдем значения коэффициентов при котором линейная комбинация этих векторов будет равна нулевому вектору.

Это векторное уравнение можно записать в виде системы линейных уравнений

x 1 + x 2 = 0
x 1 + 2 x 2 — x 3 = 0
x 1 + 2 x 3 = 0

Решим эту систему используя метод Гаусса

1 1 0 0 1 2 -1 0 1 0 2 0

из второй строки вычтем первую; из третей строки вычтем первую:

1 1 0 0 1 — 1 2 — 1 -1 — 0 0 — 0 1 — 1 0 — 1 2 — 0 0 — 0

1 1 0 0 0 1 -1 0 0 -1 2 0

из первой строки вычтем вторую; к третей строке добавим вторую:

1 — 0 1 — 1 0 — (-1) 0 — 0 0 1 -1 0 0 + 0 -1 + 1 2 + (-1) 0 + 0

1 0 1 0 0 1 -1 0 0 0 1 0

из первой строки вычтем третью; к второй строке добавим третью:

1 — 0 0 — 0 1 — 1 0 — 0 0 + 0 1 + 0 -1 + 1 0 + 0 0 0 1 0

1 0 1 0 0 1 0 0 0 0 1 0

Данное решение показывает, что система имеет единственное решение x 1 = 0, x 2 = 0, x 3 = 0, а это значит вектора a , b , c линейно независимые.

Ответ: вектора a , b , c линейно независимые.

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.

Коллинеарные векторы

Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1. Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2. Векторы a и b коллинеарны при равном отношении координат:

a = ( a 1 ; a 2 ) , b = ( b 1 ; b 2 ) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3. Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Исследуем векторы а = ( 1 ; 3 ) и b = ( 2 ; 1 ) на коллинеарность.

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ: a | | b

Какое значение m вектора a = ( 1 ; 2 ) и b = ( — 1 ; m ) необходимо для коллинеарности векторов?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = — 2 .

Ответ: m = — 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k — 1 ( a k — 1 a 1 ) e 1 + ( a k — 1 a k ) e k + . . . + ( a k — 1 a n ) e n = 0

— a k — 1 a m , где m ∈ 1 , 2 , . . . , k — 1 , k + 1 , n

β 1 e 1 + . . . + β k — 1 e k — 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = ( — β 1 ) e 1 + . . . + ( — β k — 1 ) e k — 1 + ( — β k + 1 ) e k + 1 + . . . + ( — β n ) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k — 1 e k — 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k — 1 e k — 1 — e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен — 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора — коллинеарны. Два коллинеарных вектора — линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора — компланарны. (3 компланарных вектора — линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Проверим векторы a = 3 , 4 , 5 , b = — 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , — 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 — x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 — 1 | 0 1 0 1 | 0

Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:

1 1 0 | 0 1 — 1 2 — 1 — 1 — 0 | 0 — 0 1 — 1 0 — 1 1 — 0 | 0 — 0

1 1 0 | 0 0 1 — 1 | 0 0 — 1 1 | 0

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

1 — 0 1 — 1 0 — ( — 1 ) | 0 — 0 0 1 — 1 | 0 0 + 0 — 1 + 1 1 + ( — 1 ) | 0 + 0

0 1 0 | 1 0 1 — 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Линейная зависимость векторов

Определение линейной зависимости системы векторов

Система векторов A1, A2. An называется линейно зависимой, если существует ненулевой набор чисел λ1, λ2. λn , при котором линейная комбинация векторов λ1*A12*A2+. +λn*An равна нулевому вектору, то есть система уравнений: A1x1+A2x2+. +Anxn имеет ненулевое решение.
Набор чисел λ1, λ2. λn является ненулевым, если хотя бы одно из чисел λ1, λ2. λn отлично от нуля.

Определение линейной независимости системы векторов

Система векторов A1, A2. An называется линейно независимой, если линейная комбинация этих векторов λ1*A12*A2+. +λn*An равна нулевому вектору только при нулевом наборе чисел λ1, λ2. λn , то есть система уравнений: A1x1+A2x2+. +Anxn имеет единственное нулевое решение.

Проверить, является ли линейно зависимой система векторов

Решение:

1. Составляем систему уравнений:

2. Решаем ее методом Гаусса. Преобразования Жордано системы приведены в таблице 29.1. При расчете правые части системы не записываются так как они равны нулю и при преобразованиях Жордана не изменяются.

3. Из последних трех строк таблицы записываем разрешенную систему, равносильную исходной системе:

4. Получаем общее решение системы:

5. Задав по своему усмотрению значение свободной переменной x3 =1, получаем частное ненулевое решение X=(-3,2,1).

Ответ: Таким образом, при ненулевом наборе чисел (-3,2,1) линейная комбинация векторов равняется нулевому вектору -3A1+2A2+1A3=Θ. Следовательно, система векторов линейно зависимая.

Свойства систем векторов

Свойство (1)
Если система векторов линейно зависимая, то хотя бы один из векторов разлагается по остальным и, наоборот, если хотя бы один из векторов системы разлагается по остальным, то система векторов линейно зависимая.

Свойство (2)
Если какая-либо подсистема векторов линейно зависимая, то и вся система линейно зависимая.

Свойство (3)
Если система векторов линейно независимая, то любая ее подсистема линейно независимая.

Свойство (4)
Любая система векторов, содержащая нулевой вектор, линейно зависимая.

Свойство (5)
Система m-мерных векторов всегда является линейно зависимой, если число векторов n больше их размерности (n>m)

Базис системы векторов

Базисом системы векторов A1 , A2 . An называется такая подсистема B1, B2 . Br (каждый из векторов B1,B2. Br является одним из векторов A1 , A2 . An), которая удовлетворяет следующим условиям:
1. B1,B2. Br линейно независимая система векторов;
2. любой вектор Aj системы A1 , A2 . An линейно выражается через векторы B1,B2. Br

r — число векторов входящих в базис.

Теорема 29.1 О единичном базисе системы векторов.

Если система m-мерных векторов содержит m различных единичных векторов E1 E2 . Em , то они образуют базис системы.

Алгоритм нахождения базиса системы векторов

Для того, чтобы найти базис системы векторов A1 ,A2 . An необходимо:

  • Составить соответствующую системе векторов однородную систему уравнений A1x1+A2x2+. +Anxn
  • Привести эту систему