Условие задачи:

Укажите график зависимости потенциальной энергии свободно падающего тела от времени. (Рисунок к задаче приведен справа.)

Задача №2.7.36 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Обратите внимание, что все приведенные зависимости при (t=0) имеют некоторое ненулевое значение, значит отсчет потенциальной энергии ведётся с уровня Земли, и изначально тело находится на некоторой высоте (H).

Потенциальную энергию в любой момент времени следует искать по формуле:

Здесь (h) — высота тела над Землей в момент времени (t).

Если тело свободно падает с некоторой высоты (H), то его высоту над Землей в любой момент времени можно найти по следующей формуле:

Графиком полученной функции является парабола с ветвями, направленными вниз, вершина которой поднята на величину (mgH) (на начальную потенциальную энергию). Из всех представленных графиков под заданное описание подходит только график №2.

Ответ: 2.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Период колебаний потенциальной энергии горизонтального пружинного маятника 1 с. Каким будет период ее колебаний, если массу груза маятника увеличить в 2 раза, а жесткость пружины вдвое уменьшить? (Ответ дайте в секундах.)

Период колебаний потенциальной энергии пружинного маятника пропорционален периоду колебаний груза, который определяется выражением

Следовательно, увеличение массы груза маятника в 2 раза и уменьшение жесткости пружины в 2 раза приведет к увеличению периода колебаний потенциальной энергии пружинного маятника в 2 раза: Он окажется равным

А я думала,что Период колебаний потенциальной энергии пружинного маятника пропорционален половине периода колебаний груза

Период колебаний потенциальной энергии пружинного маятника РАВЕН половине периода колебаний груза.

Пропорциональность не означает равенство, это только утверждение о том, что если одна величина увеличилась в раз, то и вторая изменилась аналогично.

А у математического маятника период колебания потенциальной энергии как определяется?

Аналогично. Это период изменения . Он равен также равен половине периода колебаний математического маятника.

Период колебаний потенциальной энергии пружинного маятника 1 с. Каким будет период ее колебаний, если массу груза маятника и жесткость пружины увеличить в 4 раза? (Ответ дайте в секундах.)

Период колебаний потенциальной энергии пружинного маятника в два раза меньше периода колебаний самого маятника. В свою очередь, период колебаний пружинного маятника зависит только от отношения массы груза и жесткости пружины:

Таким образом, одновременное их увеличение в 4 раза не приведет к изменению периода колебаний потенциальной энергии.

Добрый день! Хочу понять, как соотносятся утверждение "Период колебаний потенциальной энергии пружинного маятника пропорционален периоду колебаний груза" из задачи A6 № 526. с утверждением "Период колебаний потенциальной энергии пружинного маятника в два раза меньше периода колебаний самого маятника" в данной задаче?

По-моему, верное все-таки второе утверждение.

Оба утверждения верны. Так как пропорциональность означает не строгое равенство, а лишь закономерность. Увеличение в раз одной величины приводит к увеличение в раз другой. Этого замечания достаточно для решения задачи 526.

Кстати, обратите внимание, в рамках этого сайта уже обсуждалось, что для вертикального пружинного маятника необходимо различать полную потенциальную энергию, потенциальную энергию груза и потенциальную энергию пружины. Если первая имеет вдвое меньший период, чем период самих колебаний, то период двух последних энергий совпадает с периодом колебаний (см. комментарии к задаче 3104)

Спасибо за отклик. Обдумаю. А в этой задаче, тогда следует уточнить какой это маятник — горизонтальный или вертикальный и о колебаниях потенциальной энергии чего говорится в задаче. Иначе по каким признакам нужно понимать, о чем идет речь в задаче?!

Потенциальная энергия маятника равна сумме потенциальной энергии груза в поле тяжести и потенциальной энергии деформации пружины. Эта величина ведет себя независимо от того, как ориентирован маятник. Период ее изменения всегда равен половине периода колебаний груза. В сумме с кинетической энергией груза эта величина дает константу (полную механическую энергию маятника).

На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. Какова полная механическая энергия маятника в момент времени, соответствующий на графике точке D? (Ответ дайте в джоулях.)

При колебании математического маятника выполняется закон сохранения полной механической энергии, так как на маятник не действует никаких внешних сил, совершающих работу. В любой момент времени имеем

Из графика видно, что в моменты времени 0 с и 2 с потенциальная энергия имеет максимум, а значит, в эти моменты времени ее значение совпадает с величиной полной механической энергии. Отсюда

Примерами гармонических колебаний служат колебания пружинного и математического маятников.

Пружинный маятник — тело массой т, колеблющееся на упругой пружине (рис. 5.5) и совершающее гармонические колебания под воздействием упругой силы:

где к — жесткость пружины.

Закон движения пружинного маятника:

где а — угол отклонения маятника от положения равновесия; а0 — амплитуда колебаний (максимальное значение угла отклонения).

При последовательном соединении пружин (рис. 5.5, б) общий коэффициент жесткости

При параллельном соединении пружин общий коэффициент жесткости (рис. 5.5, в)

Круговая (циклическая) частота:

Кинетическая энергия пружинного маятника:

Потенциальная энергия пружинного маятника:

Полная энергия пружинного маятника:

На рис. 5.6, а представлен график зависимости потенциальной энергии Еп пружинного маятника от деформации х, где Е — полная энергия (прямая горизонтальная линия), кинетическая Ек и потенциальная Еп энергии заданы соответствующими отрезками ординат. Из рисунка следует, что с возрастанием деформации х потенциальная энергия маятника возрастает, кинетическая — уменьшается (и наоборот). В отсутствие трения полная энергия тела сохраняется (Е = Ек + Еи) при любых значениях х

Графические зависимости кинетической Ек, потенциальной Еп и полной энергий Е упругой деформации тел от времени t показаны на рис. 5.6, б.

Математический маятник — материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной I и колеблющаяся под действием силы тяжести (рис. 5.7).

Круговая (циклическая) частота:

Период и частота колебания математического маятника:

Если маятник движется вниз с ускорением а (или вверх с замедлением а), его период

Если маятник движется вверх с ускорением а (или вниз с замедлением а), его период

Если маятник движется с ускорением а в горизонтальном направлении, его период

Кинетическая энергия математического маятника:

Потенциальная энергия математического маятника:

Превращение энергии при гармонических колебаниях происходит в соответствии с законом сохранения энергии в консервативной системе:

При движении пружинного маятника от положения равновесия его потенциальная энергия увеличивается, а кинетическая уменьшается (см. рис. 5.6, а). Когда маятник проходит положение равновесия (? = 0), его потенциальная энергия равна нулю, а кинетическая энергия маятника максимальна и равна полной энергии. В состоянии максимального отклонения от положения равновесия скорость маятника равна нулю, следовательно, равна нулю и кинетическая энергия, а потенциальная — максимальна и равна полной энергии. Следовательно, в момент максимального отклонения и когда маятник проходит положение равновесия имеет место:

Приведенные сведения об энергии колебаний пружинного маятника имеют общее значение и справедливы для свободных гармонических незатухающих колебаний в любой колебательной системе.

Вынужденные колебания — колебания, происходящие под действием внешней, периодически действующей силы.

Вынужденные колебания совершают, например, игла швейной машины, нож электробритвы, поршень в цилиндре двигателя внутреннего сгорания и др.

Вынуждающая сила — сила, вызывающая вынужденные колебания.

Если вынуждающая сила меняется гармонически по закону F = Fmaxcos(ot (Fmax — амплитуда вынуждающей силы, со — ее циклическая частота), то в колебательной системе, на которую действует эта сила, через определенное время (соответствует переходному режиму) устанавливаются гармонические вынужденные колебания с частотой, равной частоте со вынуждающей силы (рис. 5.8).

Уравнение вынужденных колебаний:

где А — амплитуда вынужденных колебаний; ю0 — циклическая частота свободных незатухающих колебаний системы; ср0 — разность фаз между смещением х и вынуждающей силой F. Амплитуда установившихся вынужденных колебаний:

где Fmax — амплитуда вынуждающей силы; т — масса колеблющейся системы; со — циклическая частота внешней силы; г —

коэффициент сопротивления; (3 =—коэффициент затуха-

Для вынужденных колебаний характерно явление резонанса.

Разность фаз между смещением и вынуждающей силой:

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте ш0 колебаний системы. Соответственно величина а>рсз называется резонансной циклической частотой, а кривые зависимости А от оз — резонансными кривыми (рис. 5.9).

Резонансная циклическая частота и резонансная амплитуда:

Возрастание амплитуды вынужденных колебаний при резонансе выражено тем отчетливее, чем меньше трение в системе (Р —*? 0). На практике амплитуда А в точке со0 конечна за счет сопротивления среды (р| > р2 > Ро), поэтому с ростом резонансная частота сдвигается в сторону меньших частот, а резонансная амплитуда — понижается (Арез1