Квантовая запутанность остаётся объектом пристального внимания учёных уже многие десятилетия.

Принципиальная схема визуализации квантовой запутанности фотонов.

Изображения, прошедшие различные фазовые фильтры, демонстрируют, что камера регистрировала фотоны с изменённой фазой.

Квантовая запутанность – одно из самых удивительных явлений в квантовом мире. Новое исследование впервые позволило человечеству буквально увидеть его.

"Вести.Наука" (nauka.vesti.ru) подробно рассказывали о квантовой запутанности. Напомним в двух словах, о чём речь. Когда два объекта (обычно используются фотоны) запутаны друг с другом, изменение в состоянии одного мгновенно отражается на состоянии другого, какое бы расстояние их ни разделяло. При этом никаких физических взаимодействий между двумя запутанными частицами нет. Волшебство? Наука.

В новом эксперименте физики создавали пары запутанных фотонов. Для этого они облучали кристалл бета-бората бария ультрафиолетом. Испускаемый кристаллом свет попадал на светоделитель, разделяющий световой луч надвое. При этом фотоны первого луча оказывались запутанными с фотонами второго. Каждый луч проходил через собственный пространственный модулятор света (ПМС).

Помимо этого первый луч встречал на своём пути так называемый фазовый объект, который менял фазу фотонов.

Далее первый луч поступал на приёмник. По оптоволокну фотоны добирались от него до однофотонного лавинного диода (single-photon avalanche diode, или SPAD). Этот прибор порождал кратковременный, но заметный электрический ток даже в ответ на приход одного фотона.

Ток, порождаемый SPAD, включал сверхчувствительную камеру. Камера была установлена так, чтобы в её объектив падал второй луч.

Но второй луч не встречал на своём пути устройства, меняющего фазу. Зато он проходил через фазовые фильтры, пропускающие только фотоны с определённой фазой.

Чтобы не потеряться в этом обилии терминов и процессов, поясним разницу между первой и второй ситуацией "на пальцах". Вообразим, что луч света – это поток не фотонов, а людей. На пути первого потока стоит сумасшедший модельер, который насильно всех переодевает (это изменение фазы). Второй поток встречается со строгими охранниками, которые никого не переодевают, но пропускают лишь тех, кто соответствует заявленному дресс-коду (это фазовый фильтр). При этом охранникам можно дать инструкцию пропускать (или, наоборот, задерживать) лишь тех, кто одет согласно вкусу модельера. Благодаря этому можно судить о том, подвергся ли влиянию безумного модельера тот поток людей, что не встречался с ним самим.

Возвращаясь к физике, можно сказать, что фазовые фильтры помогают понять, изменилась ли фаза фотонов второго луча (которые не встречались с меняющим фазу объектом), однако известно, что это делали запутанные с ними "близнецы" из первого луча.

Первый фотон из пары инициировал включение камеры как раз тогда, когда до неё добирался второй фотон из пары (если его пропускали фазовые фильтры). Для этого путь второго луча был удлинён специальной линией задержки, состоящей из четырёх зеркал.

Камера фиксировала, достиг ли её второй фотон, то есть пропустили ли его фазовые фильтры.

Эксперимент подтвердил, что первый фотон менял фазу синхронно со вторым, несмотря на то, что он не проходил через меняющий фазу объект. Так и должно было быть, поскольку фотоны в первом и втором лучах были запутаны между собой, и изменение в состоянии одного моментально отражалось на состоянии другого.

"Изображение, которое нам удалось запечатлеть, является элегантной демонстрацией фундаментального свойства природы, впервые зафиксированного в форме изображения. Это захватывающий результат, который можно использовать для развития новой области квантовых вычислений и создания новых типов визуализации [квантовых явлений]", – объясняет первый автор статьи Поль-Антуан Моро (Paul-Antoine Moreau) из Университета Глазго.

К слову, ранее "Вести.Наука" рассказывали о том, как свет древнейших квазаров подтвердил реальность квантовой запутанности, и об эксперименте по выявлению возможного влияния гравитации на этот феномен.

Здравствуйте, дорогие читатели! Добро пожаловать на блог!

Что такое квантовая запутанность простыми словами? Телепортация – возможно ли это? Доказана ли экспериментально возможность телепортации? Что такое кошмар Энштейна? В этой статье Вы получите ответы на эти вопросы.

Вступление

Мы в фантастических фильмах и книгах часто встречаемся с телепортацией. Вы задумывались, почему то, что придумали писатели, со временем становится нашей реальностью? Как им удаётся предсказывать будущее? Думаю, это не случайность. Часто писатели-фантасты обладают обширными знаниями по физике и другим наукам, что в сочетании с их интуицией и незаурядной фантазией помогает им построить ретроспективный анализ прошлого и смоделировать события будущего.

Из статьи Вы узнаете:

  • Что такое квантовая запутанность?
  • Спор Энштейна с Бором. Кто прав?
  • Теорема Белла. Спор разрешён?
  • Подтверждена ли телепортация экспериментально?

Понятие «квантовая запутанность» появилось из теоретического предположения, вытекающего из уравнений квантовой механики. Оно означает вот что: если 2 квантовые частицы (ими могут быть электроны, фотоны) оказываются взаимозависимыми (запутанными), то связь сохраняется, даже если их разнести в разные части Вселенной

Открытие квантовой запутанности в некоторой степени объясняет теоретическую возможность телепортации.

Если получить пару фотонов одновременно, то они окажутся связанными (запутанными). А если замерить спин одного из них и он окажется положительным, то спин 2-го фотона – будьте уверены – мгновенно станет отрицательным. И, наоборот. Что такое Квантовая физика и Спин можете узнать из Квантовая физика простыми словами. А если Вам интересно узнать о практическом применении квантовой физики, читайте статью Что такое квантовый компьютер? Просто о сложном.

Если коротко, то спином квантовой частицы (электрона, фотона) называется ёё собственный угловой момент. Спин можно представить в виде вектора, а саму квантовую частицу – в виде микроскопического магнитика.

Важно понять, что когда за квантом, например, электроном никто не наблюдает, то он имеет все значения спина одновременно. Это фундаментальное понятие квантовой механики называется «суперпозицией».

Представьте, что Ваш электрон вращается одновременно по часовой стрелке и против часовой стрелки. То есть он сразу в обоих состояниях спина (вектор спина вверх/вектор спина вниз). Представили? ОК. Но как только появляется наблюдатель и измеряет его состояние, электрон сам определяет, какой вектор спина ему принять – вверх или вниз.

Хотите узнать, как измеряют спин электрона? Его помещают в магнитное поле: электроны со спином против направления поля, и со спином по направлению поля отклонятся в разные стороны. Спины фотонов измеряют, направляя в поляризационный фильтр. Если спин (или поляризация) фотона «-1», то он не проходит через фильтр, а если «+1», то проходит.

Резюме. Как только Вы измерили состояние одного электрона и определили, что его спин «+1», то связанный или «запутанный» с ним электрон принимает значение спина «-1». Причём моментально, даже если он находится на Марсе. Хотя до измерения состояния 2-го электрона, он имел оба значения спина одновременно («+1» и «-1»).

Этот парадокс, доказанный математически, очень не нравился Энштейну. Потому что он противоречил его открытию, что нет скорости больше, чем скорость света. Но понятие запутанных частиц доказывало: если одна из запутанных частиц будет находиться на Земле, а 2-я – на Марсе, то 1-я частица в момент замера ёё состояния мгновенно (быстрее скорости света) передаёт 2-й частице информацию, какое значение спина ей принять. А именно: противоположное значение.

Спор Энштейна с Бором. Кто прав?

Энштейн называл «квантовую запутанность» SPUCKHAFTE FERWIRKLUNG (нем.) или пугающим, призрачным, сверхъестественным действием на расстоянии.

Энштейн не соглашался с интерпретацией Бора о квантовой запутанности частиц. Потому что это противоречило его теории, что информация не может передаваться со скоростью больше скорости света. В 1935 году он опубликовал статью с описанием мысленного эксперимента. Этот эксперимент назвали «Парадоксом Эйнштейна — Подольского — Розена».

Энштейн соглашался, что связанные частицы могут существовать, но придумал другое объяснение мгновенной передачи информации между ними. Он сказал, что «запутанные частицы» скорее напоминают пару перчаток. Представьте, что у Вас пара перчаток. Левую Вы положили в один чемодан, а правую – во второй. 1-й чемодан Вы отправили другу, а 2-й – на Луну. Когда друг получит чемодан, он будет знать, что в чемодане либо левая, либо правая перчатка. Когда же он откроет чемодан и увидит, что в нём левая перчатка, то он мгновенно узнает, что на Луне – правая. И это не означает, что друг повлиял на то, что в чемодане левая перчатка и не означает, что левая перчатка мгновенно передала информацию правой. Это только означает то, что свойства перчаток были изначально такими с момента, как их разделили. Т.е. в запутанные квантовые частицы изначально заложена информация об их состояниях.

Так кто же был прав Бор, который считал, что связанные частицы передают друг другу информацию мгновенно, даже если они разнесены на огромные расстояния? Или Энштейн, который считал, что никакой сверхъестественной связи нет, и всё предопределено задолго до момента измерения.

Этот спор на 30 лет переместился в область философии. Разрешился ли спор с тех времён?

Теорема Белла. Спор разрешён?

Джон Клаузер, будучи ещё аспирантом Колумбийского университета, в 1967 отыскал забытую работу ирландского физика Джона Белла. Это была сенсация: оказывается Беллу удалось вывести из тупика спор Бора и Энштейна. Он предложил экспериментально проверить обе гипотезы. Для этого он предложил построить машину, которая бы создавала и сравнивала много пар запутанных частиц. Джон Клаузер принялся разрабатывать такую машину. Его машина могла создавать тысячи пар запутанных частиц и сравнивать их по разным параметрам. Результаты экспериментов доказывали правоту Бора.

А вскоре французский физик Ален Аспе провёл опыты, один из которых касался самой сути спора между Энштейном и Бором. В этом опыте измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от 1-й ко 2-й прошёл бы со скоростью, превышающей скорость света. Но сам Энштейн доказал, что это невозможно. Оставалось только одно объяснение – необъяснимая, сверхъестественная связь между частицами.

Результаты опытов доказали, что теоретическое предположение квантовой механики – верно. Квантовая запутанность – это реальность (Квантовая запутанность Википедия). Квантовые частицы могут быть связанными несмотря на огромные расстояния. Измерение состояния одной частицы влияет на состояние далеко расположенной от нёё 2-й частицы так, как если бы расстояния между ними не существовало. Сверхъестественная связь на расстоянии происходит в действительности.

Остаётся вопрос, возможна ли телепортация?

Подтверждена ли телепортация экспериментально?

Японские учёные ещё в 2011 году впервые в мире телепортировали фотоны! Мгновенно переместили из пункта А в пункт Б пучок света.

Для этого Нориюки Ли со своими коллегами разложили свет на частицы – фотоны. Один фотон был «квантово запутанным» с другим фотоном. Фотоны были взаимосвязанными, хотя находились в разных точках. Учёные уничтожили 1-й фотон в точке А, но он был мгновенно воссоздан в точке Б благодаря их «квантовой запутанности». До телепортации Кота Шрёдингера ещё, конечно, далеко, но 1-й шаг уже сделан. Кстати, хотите узнать, что означает парадокс «Кота Шрёдингера»? — читайте статью Кот Шредингера простыми словами. Суть эксперимента.

Хотите, чтобы за 5 минут всё, что Вы прочитали о квантовой запутанности, разложилось по полочкам – посмотрите это видео замечательное видео.

До скорых встреч!

Желаю всем интересных, вдохновляющих проектов!

Новый способ запутывать фотоны оказался эффективнее всех прочих.

Квантовая физика знаменита своей неинтуитивностью: концентрация парадоксов в ней кладёт на лопатки теорию относительности и космологию вместе взятые. Наиболее обсуждаемые в наши дни разделы квантовой физики, в которых парадоксальность воплотилась во всей полноте – это квантовая информация и квантовая оптика.

Квантовая защита информации – святой Грааль для технологии безопасной передачи данных. В основе так называемой квантовой криптографии лежит удивительное квантовое явление – запутанность фотонов (элементарных частиц, переносящих электромагнитное взаимодействие и, в частности, свет).

Суть его в том, что два определённым образом полученных фотона оказываются связаны между собой, так что изменение состояния одного из них вызывает мгновенное изменение в состоянии другого, даже если они находятся на большом расстоянии друг от друга. Запутанность можно использовать для безопасной передачи данных: если некое третье лицо попробует скопировать информацию, о том мгновенно станет известно ее настоящим владельцам. Однако запутать фотоны и потом еще сохранить их запутанность при неизбежном взаимодействии с окружающим миром – задача весьма и весьма непростая.

Станислав Страупе из МГУ рассказывает об этом так: «Перепутанные состояния вообще типичны и повсеместны. Проблема только в том, что для большинства частиц взаимодействие с окружением быстро разрушает перепутывание. Фотоны же практически ни с чем не взаимодействуют, поэтому они являются очень удобным объектом для экспериментов в этой области».

Большая часть источников света, с которыми мы сталкиваемся в жизни – Солнце, лампы накаливания, лазеры, светодиоды – называют классическими: испускаемые ими фотоны подчиняются некоторому статистическому распределению. В неклассическом свете из источника вылетает один или два фотона в единицу времени, и создать такой источник довольно сложно. Для этого можно, например, изолировать одиночный атом или квантовую точку и регистрировать одиночные фотоны, испускаемые в результате возбуждения.

Чтобы получить запутанные фотоны, чаще всего используют эффект спонтанного параметрического рассеяния света в нелинейных кристаллах. Для этого кристалл с определёнными оптическими свойствами облучают так называемым лазером накачки. Фотон из лазерного пучка, попадая в кристалл, распадается на два фотона, энергия которых в сумме равна энергии фотона накачки. В силу законов сохранения фотоны оказываются коррелированы, или запутаны, однако главная проблема такого способа запутывания заключается в низкой эффективности и необходимости фильтровать фотоны на выходе, чтобы получить пары с необходимыми свойствами.

Станислава Страупе и его коллеги предложили новый метод создания пространственного перепутывания, который более эффективен, чем прочие. По словам Егора Ковлакова, в своих экспериментах они получают пучки фотонов, которые оказываются коррелированы по так называемой пространственной форме. Ключевое отличие нового подхода заключается в том, что форма и тип пучка накачки подбираются так, чтобы оптимизировать эффективность испускания запутанных фотонов, избавляя экспериментаторов от необходимости фильтровать выходящее из нелинейного кристалла излучение. Полностью результаты исследователей опубликованы в Physical Review Letters .

Метод можно использовать не только в квантовой криптографии, хотя на данный момент это наиболее развитая область применения фотонной запутанности. «В отличии от классических систем связи, где неважно, какой именно алфавит используется для кодирования сообщения и достаточно использовать бинарный код (0 и 1), в квантовой связи все сложнее. Оказывается, что повышение размерности алфавита не только увеличивает количество информации, кодируемое в одном фотоне, но и увеличивает секретность связи. Поэтому системы квантовой связи, основанные в том числе и на кодировании информации в пространственной форме фотонов, интересны как физикам, так и индустрии», – отмечает Станислав Страупе.

Возможно, новый способ запутывать фотонов позволит создать оптический канал со спутником на орбите, куда нельзя протянуть оптическое волокно.