Arduino и добавленная к ней схема заряда могут быть использованы для мониторинга и управления зарядкой никель-металл-гидридных аккумуляторов, например, так:

Законченное устройство

Аккумуляторные батареи являются отличным способом для питания вашей портативной электроники. Они могут сэкономить вам много денег при правильной зарядке. Для того, чтобы вы могли получить максимальную отдачу от ваших аккумуляторных батарей, их необходимо правильно заряжать. Это означает, что вам необходимо хорошее зарядное устройство. Вы можете потратить кучу денег, купив готовое зарядное устройство, а можете получить удовольствие, сделав его сами. В данной статье мы рассмотрим, как можно создать зарядное устройство, управляемое Arduino.

Во-первых, важно отметить, что не существует универсального способа зарядки, который подходил бы для всех аккумуляторов. Разные типы аккумуляторов используют разные химические процессы, обеспечивающие их работу. В результате, разные типы аккумуляторов необходимо заряжать по-разному. В этой статье мы не сможем охватить все типы аккумуляторных батарей и методы зарядки. Поэтому для простоты мы сосредоточим внимание на наиболее распространенном типе аккумуляторных батарей размера AA, на никель-металл-гидридных аккумуляторах (NiMH).

Комплектующие

Список комплектующих слева направо:

  • контроллер Arduino;
  • держатель батареи размера AA;
  • NiMH аккумулятор;
  • мощный резистор 10 Ом (минимум 5 ватт);
  • резистор 1 МОм;
  • конденсатор 1 мкФ;
  • MOSFET транзистор IRF510;
  • датчик температуры TMP36;
  • источник питания 5 вольт;
  • макетная плата;
  • перемычки.

Как заряжать NiMH AA аккумуляторы

Существует много способов зарядки NiMH аккумуляторов. Выбор используемого вами метода главным образом зависит от того, как быстро вы хотите зарядить аккумулятор. Скорость заряда измеряется по отношению к емкости батареи. Если ваша батарея обладает емкостью 2500 мАч, и вы заряжаете ее током 2500 мА, то вы заряжаете ее со скоростью 1C. Если вы заряжаете этот же аккумулятор током 250 мА, то вы заряжаете его со скоростью C/10.

Во время быстрой зарядки аккумулятора (со скоростью выше C/10), вам необходимо тщательно контролировать напряжение на батарее и ее температуру, чтобы не перезарядить ее. Это может серьезно повредить аккумулятор. Тем не менее, когда вы заряжаете аккумулятор медленно (со скоростью ниже C/10), у вас гораздо меньше шансов повредить батарею, если случайно перезарядите ее. Поэтому медленные методы зарядки, как правило, считаются более безопасными и помогут вам увеличить срок службы батареи. Поэтому в нашем самодельном зарядном устройстве мы будем использовать скорость заряда C/10.

Цепь заряда

Для данного зарядного устройства основой является схема для управления источником питания с помощью Arduino. Схема питается от источника напряжения 5 вольт, например, от адаптера переменного тока или компьютерного блока питания. Большинство USB портов не подходит для данного проекта из-за ограничений по току. Источник 5В заряжает батарею через мощный резистор 10 Ом и мощный MOSFET транзистор. MOSFET транзистор устанавливает величину тока, протекающего через батарею. Резистор добавлен как простой способ контроля тока. Контроль величины тока выполняется подключением каждого вывода резистора к аналоговым входным выводам Arduino и измерением напряжения с каждой стороны. MOSFET транзистор управляется выходным ШИМ выводом Arduino. Импульсы сигнала широтно-импульсной модуляции сглаживаются до постоянного напряжения фильтром на резисторе 1 МОм и конденсаторе 1 мкФ. Данная схема позволяет Arduino отслеживать и управлять током, протекающим через батарею.

Датчик температуры

В качестве дополнительной меры предосторожности в зарядное устройство добавлен датчик температуры TMP36 для контроля температуры батареи. Данный датчик выдает напряжение, которое линейно зависит от температуры. Поэтому он, в отличие от термисторов, не требует калибровки или балансировки. Датчик устанавливается в просверленном отверстии в корпусе держателя батареи и приклеивается в отверстии так, чтобы он прижимался к батарее, когда та будет установлена в держатель. Выводы датчика подключаются к шине 5В, к корпусу и к аналоговому входному выводу Arduino.

Держатель AA батареи перед и после установки на макетную плату

Код для данного проекта довольно прост. Переменные в начале исходного кода позволяют настроить зарядное устройство путем ввода значений емкости батареи и точного сопротивления мощного резистора. Также добавлены и переменные безопасных порогов. Максимально допустимое напряжение на батарее устанавливается в значение 1,6 вольта. Максимальная температура батареи установлена на 35 градусов по Цельсию. Максимальное время заряда установлено на 13 часов. Если какой-либо из этих порогов безопасности будет превышен, зарядное устройство выключается.

В теле программы вы можете увидеть, что система постоянно измеряет напряжения на выводах мощного резистора. Это используется для расчета значений напряжения на батарее и протекающего через нее тока. Ток сравнивается с целевым значением, которое составляет C/10. Если рассчитанный ток отличается от целевого значения более, чем на 10 мА, система автоматически подстраивает выходное значение, чтобы подкорректировать его.

Arduino использует последовательный интерфейс для отображения всех текущих данных. Если вы хотите проконтролировать работу вашего зарядного устройства, то можете подключить Arduino к USB порту компьютера, но это необязательно, так как Arduino питается от источника напряжения 5В зарядного устройства.

Скачиваемую версию исходного кода вы можете найти по ссылке, приведенной ниже.

Теперь вы можете создать собственное зарядное устройство. Но обязательно контролируйте скорость заряда и соблюдайте технику безопасности, так как избыточная зарядка аккумулятора может быть опасна.

Arduino и добавленная к ней схема заряда могут быть использованы для мониторинга и управления зарядкой никель-металл-гидридных аккумуляторов, например, так:

Законченное устройство

Аккумуляторные батареи являются отличным способом для питания вашей портативной электроники. Они могут сэкономить вам много денег при правильной зарядке. Для того, чтобы вы могли получить максимальную отдачу от ваших аккумуляторных батарей, их необходимо правильно заряжать. Это означает, что вам необходимо хорошее зарядное устройство. Вы можете потратить кучу денег, купив готовое зарядное устройство, а можете получить удовольствие, сделав его сами. В данной статье мы рассмотрим, как можно создать зарядное устройство, управляемое Arduino.

Во-первых, важно отметить, что не существует универсального способа зарядки, который подходил бы для всех аккумуляторов. Разные типы аккумуляторов используют разные химические процессы, обеспечивающие их работу. В результате, разные типы аккумуляторов необходимо заряжать по-разному. В этой статье мы не сможем охватить все типы аккумуляторных батарей и методы зарядки. Поэтому для простоты мы сосредоточим внимание на наиболее распространенном типе аккумуляторных батарей размера AA, на никель-металл-гидридных аккумуляторах (NiMH).

Комплектующие

Список комплектующих слева направо:

  • контроллер Arduino;
  • держатель батареи размера AA;
  • NiMH аккумулятор;
  • мощный резистор 10 Ом (минимум 5 ватт);
  • резистор 1 МОм;
  • конденсатор 1 мкФ;
  • MOSFET транзистор IRF510;
  • датчик температуры TMP36;
  • источник питания 5 вольт;
  • макетная плата;
  • перемычки.

Как заряжать NiMH AA аккумуляторы

Существует много способов зарядки NiMH аккумуляторов. Выбор используемого вами метода главным образом зависит от того, как быстро вы хотите зарядить аккумулятор. Скорость заряда измеряется по отношению к емкости батареи. Если ваша батарея обладает емкостью 2500 мАч, и вы заряжаете ее током 2500 мА, то вы заряжаете ее со скоростью 1C. Если вы заряжаете этот же аккумулятор током 250 мА, то вы заряжаете его со скоростью C/10.

Во время быстрой зарядки аккумулятора (со скоростью выше C/10), вам необходимо тщательно контролировать напряжение на батарее и ее температуру, чтобы не перезарядить ее. Это может серьезно повредить аккумулятор. Тем не менее, когда вы заряжаете аккумулятор медленно (со скоростью ниже C/10), у вас гораздо меньше шансов повредить батарею, если случайно перезарядите ее. Поэтому медленные методы зарядки, как правило, считаются более безопасными и помогут вам увеличить срок службы батареи. Поэтому в нашем самодельном зарядном устройстве мы будем использовать скорость заряда C/10.

Цепь заряда

Для данного зарядного устройства основой является схема для управления источником питания с помощью Arduino. Схема питается от источника напряжения 5 вольт, например, от адаптера переменного тока или компьютерного блока питания. Большинство USB портов не подходит для данного проекта из-за ограничений по току. Источник 5В заряжает батарею через мощный резистор 10 Ом и мощный MOSFET транзистор. MOSFET транзистор устанавливает величину тока, протекающего через батарею. Резистор добавлен как простой способ контроля тока. Контроль величины тока выполняется подключением каждого вывода резистора к аналоговым входным выводам Arduino и измерением напряжения с каждой стороны. MOSFET транзистор управляется выходным ШИМ выводом Arduino. Импульсы сигнала широтно-импульсной модуляции сглаживаются до постоянного напряжения фильтром на резисторе 1 МОм и конденсаторе 1 мкФ. Данная схема позволяет Arduino отслеживать и управлять током, протекающим через батарею.

Датчик температуры

В качестве дополнительной меры предосторожности в зарядное устройство добавлен датчик температуры TMP36 для контроля температуры батареи. Данный датчик выдает напряжение, которое линейно зависит от температуры. Поэтому он, в отличие от термисторов, не требует калибровки или балансировки. Датчик устанавливается в просверленном отверстии в корпусе держателя батареи и приклеивается в отверстии так, чтобы он прижимался к батарее, когда та будет установлена в держатель. Выводы датчика подключаются к шине 5В, к корпусу и к аналоговому входному выводу Arduino.

Держатель AA батареи перед и после установки на макетную плату

Код для данного проекта довольно прост. Переменные в начале исходного кода позволяют настроить зарядное устройство путем ввода значений емкости батареи и точного сопротивления мощного резистора. Также добавлены и переменные безопасных порогов. Максимально допустимое напряжение на батарее устанавливается в значение 1,6 вольта. Максимальная температура батареи установлена на 35 градусов по Цельсию. Максимальное время заряда установлено на 13 часов. Если какой-либо из этих порогов безопасности будет превышен, зарядное устройство выключается.

В теле программы вы можете увидеть, что система постоянно измеряет напряжения на выводах мощного резистора. Это используется для расчета значений напряжения на батарее и протекающего через нее тока. Ток сравнивается с целевым значением, которое составляет C/10. Если рассчитанный ток отличается от целевого значения более, чем на 10 мА, система автоматически подстраивает выходное значение, чтобы подкорректировать его.

Arduino использует последовательный интерфейс для отображения всех текущих данных. Если вы хотите проконтролировать работу вашего зарядного устройства, то можете подключить Arduino к USB порту компьютера, но это необязательно, так как Arduino питается от источника напряжения 5В зарядного устройства.

Скачиваемую версию исходного кода вы можете найти по ссылке, приведенной ниже.

Теперь вы можете создать собственное зарядное устройство. Но обязательно контролируйте скорость заряда и соблюдайте технику безопасности, так как избыточная зарядка аккумулятора может быть опасна.

цифровая электроника вычислительная техника встраиваемые системы

Контроллер заряда смартфона на основе Arduino своими руками

Почти каждый пользователь мобильного телефона (либо модного смартфона, либо обычного телефона) сталкивается с одной проблемой: подключить телефон к зарядному адаптеру и забыть, что устройство подключено.

Многие современные контроллеры заряда на мобильных телефонах очень продвинуты и обнаруживают, когда ваша батарея полностью заряжена, и отключают подачу питания на аккумулятор (не полностью, но удерживают устройство в состоянии зарядки, известном как периодическая зарядка).

Но основным недостатком устройства, которое остается подключенным даже после полной зарядки аккумулятора, является его влияние на срок службы аккумулятора. Каждая батарея имеет ограничение на количество раз, которое она может быть заряжена (так называемые циклы зарядки). Кроме того, температура играет важную роль в жизни батареи. Более высокие температуры могут нарушить химический состав аккумулятора.

Поэтому, предлагаемый в данном материале проект контроллера зарядки смартфона на базе Arduino может помочь полностью контролировать время зарядки, и по истечении этого времени питание зарядного адаптера отключается. Звучит интересно и практично, теперь посмотрим, как это реализуется.

Основная концепция контроллера зарядки смартфонов на базе Arduino очень проста. Установите время, за которое вы хотите зарядить свой мобильный телефон. По истечении времени отключите питание зарядного устройства. Например, вы установили время зарядки 2 часа (возможно, на основе предыдущего наблюдения или математических расчетов). Питание к зарядному устройству включается с помощью реле и запускается таймер. Ваш мобильный телефон заряжается в течение следующих двух часов, и когда обратный отсчет времени достигает отметки 2 часа, реле выключается, и в результате питание зарядного устройства также отключается.

Принципиальная схема подключения системы контроллера зарядки смартфона на базе Arduino показана ниже.

Основными компонентами проекта, кроме Arduino UNO, являются энкодер, реле и ЖК-дисплей 16X2. Контакт IN1 модуля реле подключен к контакту 12 платы Arduino. Что касается поворотного энкодера, его контакты CLK, DT и SW подключены к контактам 10, 11 и 2 плты Arduino UNO. Наконец, ЖК-дисплей, контакты с 8 по 3 платы Arduino подключены к RS, E, D4 — D7 ЖК-дисплея.

Код для проекта контроллера зарядки смартфона на основе Arduino приведен далее.

После выполнения необходимых подключений согласно электрической схеме, загрузите код в Arduino и включите источник питания. Вы получите часы (HH), минуты (MM), секунды (SS) на ЖК-дисплее 16 × 2. Выбрав часы, поверните ручку на поворотном энкодере, чтобы установить желаемое количество часов. Когда значение часов установлено, нажмите ручку, чтобы зафиксировать это значение. Точно так же вы можете установить минуты и секунды. После того, как все установлено, выберите OK на ЖК-дисплее и нажмите ручку. Теперь реле активируется (что означает, что телефон начинает заряжаться), и начинается отсчет времени, установленный вами. Как только обратный отсчет достигает «0», реле выключается (питание на адаптер будет отключено).

Во время зарядки в случае сбоя питания оставшееся время сохраняется в памяти, и при возобновлении подачи питания вам будет предложено продолжить отсчет времени или установить новое время. Соответственно зарядка будет выполняться.

Этот проект очень полезен для людей, которые склонны заряжать телефон в ночное время, или для тех, кто часто забывает, что они подключили телефон к зарядному устройству.