Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C2y, которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + byc, ax + byc. Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by

Пусть для определенности a&lt 0, b>0, c >0. Все точки с абсциссой x0, лежащие выше P (например, точка М), имеют yM>y0, а все точки, лежащие ниже точки P, с абсциссой x0, имеют yN c, образующие полуплоскость, а с другой стороны – точки, для которых ax + by

Знак неравенства в полуплоскости зависит от чисел a, b , c.
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

Решение:

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.


Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x+ y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y– 2 = 0

x20
y01

yx – 1 = 0

x02
y13

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y– 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. yx– 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Пример 3 . Решить графически систему
Выпишем уравнения, соответствующие неравенствам, и построим прямые.
Рисунок 4
x + y – 1 = 0

x01
y10

yx – 1 = 0

x0–1
y10

Определим знаки в полуплоскостях. Выберем точку (0; 0):
0 – 0 – 1 ≤ 0, т.е. yx – 1 ≤ 0 ниже прямой;
0 + 0 – 1 ≤ 0, т.е. x + y – 1 ≤ 0 ниже прямой.
Пересечением двух полуплоскостей является угол с вершиной в точке А(0;1). Эта неограниченная область является решением исходной системы неравенств.

  • Решение онлайн
  • Видеоинструкция

Заменив знаки неравенств на знаки равенств, получим систему граничных прямых:

Построим каждую из прямых на плоскости xOy по координатам двух точек.

Прямая l 1 проходит через точки ( ;0) и (0; ) и делит плоскость на две полуплоскости. Подставим в неравенство –4 x +5 y 29 координаты точки (0;0), получим неравенство 0 29 – верное числовое неравенство, значит, решением неравенства является

полуплоскость, которая содержит точку (0;0), вместе с граничной прямой.

Аналогично, прямая l 2 проходит через точки ( ;0) и (0;-14);

0≤14 –верно, значит, решением неравенства является полуплоскость, содержащая точку (0;0), вместе с прямой l 2.

Прямая l 3 проходит через точки ( ;0) и (0;19);

0≥38 – неверное числовое неравенство, значит, решением неравенства является полуплоскость, которая не содержит точку (0;0), вместе с граничной прямой.

Сделаем чертеж, на котором штриховкой укажем данные полуплоскости:

Заштрихованный треугольник АВС является областью решений системы линейных неравенств.

Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для сравнения величин.

СимволНазваниеТип знака
>большестрогий знак
(число на границе не включается )
строгий знак
(число на границе не включается )
больше или равнонестрогий знак
(число на границе включается )
меньше или равнонестрогий знак
(число на границе включается )

Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство отличается от уравнения.

В отличии от уравнения в неравенстве вместо знака равно « = » используют любой знак сравнения: « > », « », « ≤ » или « ≥ ».

Линейным неравенством называют неравенство, в котором неизвестное стоит только в первой степени.

Рассмотрим пример линейного неравенства.

Как решить линейное неравенство

Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное в первой степени с коэффициентом « 1 ».

При решении линейных неравенств используют правило переноса и правило деления неравенства на число.

Правило переноса в неравенствах

Также как и в уравнениях, в неравенствах можно переносить любой член неравенства из левой части в правую и наоборот.

При переносе из левой части в правую (и наоборот) член неравенства меняет свой знак на противоположный .

Вернемся к нашему неравенству и используем правило переноса.

Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить, понятие числовой оси.

Нарисуем числовую ось для неизвестного « x » и отметим на ней число « 14 ».

При нанесении числа на числовую ось соблюдаются следующие правила:

  • если неравенство строгое, то число отмечается как «пустая» точка. Это означает, что число не входит в область решения;
  • если неравенство нестрогое, то число отмечается как «заполненная» точка. Это означает, что число входит в область решения.

Заштрихуем на числовой оси по полученному ответу « x » все решения неравенства, то есть область слева от числа « 14 ».

Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство « x − 6 » даст верный результат.

Возьмем, например число « 12 » из заштрихованной области и подставим его вместо « x » в исходное неравенство « x − 6 ».

Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.

Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство дают верный результат.

Решением неравенства называют множество чисел из заштрихованной области на числовой оси.

В нашем примере ответ « x » можно понимать так: любое число из заштрихованной области (то есть любое число меньшее « 14 ») будет являться решением неравенства « x − 6 ».

Правило умножения или деления неравенства на число

Рассмотрим другое неравенство.

Используем правило переноса и перенесём все числа без неизвестного, в правую часть.

Теперь нам нужно сделать так, чтобы при неизвестном « x » стоял коэффициент « 1 ». Для этого достаточно разделить и левую, и правую часть на число « 2 ».

При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.

  • Если неравенство умножается (делится) на положительное число, то
    знак самого неравенства остаётся прежним .
  • Если неравенство умножается (делится) на отрицательное число, то
    знак самого неравенства меняется на противоположный .

Разделим « 2x > 16 » на « 2 ». Так как « 2 » — положительное число, знак неравенства останется прежним.

Рассмотрим другое неравенство.

Разделим неравенство на « −3 ». Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.